

 Machine Learning
 2° BEMACS

Written by

Giorgio Micaletto

Contents

1 Lecture 1: Loss Function and Model Performance 5
1.1 Modeling Relationship Between Features and Target 5

1.2 Loss Functions . 5

1.3 Model Performance Issues . 6

2 Lecture 2: Optimization 6
2.1 Unconstrained Optimization . 6

2.1.1 Gradient Descent . 6

2.1.2 Stochastic Gradient Descent (SGD) 7

2.2 Constrained Optimization . 8

3 Lecture 3: Ordinary Least Squares 9

4 Lecture 4: Maximum Likelihood, Categorical Data 10
4.1 Maximum Likelihood ... 10

4.2 Categorical Data ... 10

5 Lecture 5: Polynomial Regression, Bias, Variance 11
5.1 Polynomial Regression ... 11

5.2 Understanding Bias and Variance .. 12

5.3 The Generalization Gap and Model Complexity .. 12

6 Lecture 6: Regularization and Cross-Validation 12
6.1 L2 Regularization .. 12

6.2 L1 Regularization .. 13

6.3 Bayesian Interpretation of L1 and L2 Regularization 14

6.3.1 Bayesian Interpretation of L2 Regularization (Ridge) 14

6.3.2 Bayesian Interpretation of L1 Regularization (Lasso) 15

6.3.3 Implications of Bayesian Priors .. 15

6.4 Cross-Validation ... 15

6.4.1 Validation Set Approach ... 15

6.4.2 Leave-One-Out Cross-Validation (LOOCV) .. 16

6.4.3 k-Fold Cross-Validation ... 16

7 Lecture 7: Classification 16

7.1 Logistic Regression ... 16

7.2 Multivariable Logistic Regression ... 17

7.2.1 Model Formulation ... 17

7.2.2 Parameter Estimation .. 18

7.3 Multivariate Logistic Regression .. 18

7.3.1 Model Formulation ... 18

7.3.2 Parameter Estimation .. 19

8 Lecture 8: GLMs and Non-Parametric Methods 19
8.1 Generalized Linear Models .. 19

8.1.1 Components of a GLM ... 19

8.1.2 Example: Logistic Regression .. 20

8.2 k-Nearest Neighbours ... 20

8.2.1 The Algorithm .. 20

8.2.2 Choice of k ... 21

8.2.3 Data Normalization .. 21

8.3 Decision Trees .. 21

8.3.1 Regression Tree .. 21

8.3.2 Classification Tree ... 22

8.3.3 Criteria for Splitting in Decision Trees ... 22

9 Lecture 9 - 10: Support Vector Machines 23
9.1 Maximal Margin Classifier .. 23

9.1.1 Classification using a Hyperplane ... 24

9.1.2 The Maximal Margin Classifier ... 24

9.2 Support Vector Classifiers ... 25

9.2.1 How to compute w .. 26

11 Lecture 11: Kernel Methods 28
11.1 Kernel Ridge Regression .. 28

11.2 The Kernel Trick .. 29

12 Lecture 12: Gaussian Processes 30

13 Lecture 13-14: Ensemble Methods 31
13.1 Bagging ... 31

13.2 Random Forest ... 31

13.3 Adaboost ... 32

13.4 Gradient Boosting .. 32

15 Lecture 15: Introduction to Neural Networks 33

16 Lecture 16: Training a neural network 34

19 Lecture 19: CNNs and Regularizers 35
19.1 Convolutional Neural Networks .. 35

19.2 Dropout ... 36

20 Lecture 20 - 21: Unsupervised Learning 37
20.1 K-Means .. 37

20.2 Gaussian Mixture Model ... 38

20.3 Principal Component Analysis ... 39

20.4 Autoencoders ... 41

22 Lecture 22: Introduction to Bandits and Reinforcement Learning 41
22.1 Online Gradient Descent ... 41

22.2 Stochastic Multi-Armed Bandits ... 42

D

H

Rules

Office hours: usemotion.com/meet/andrea-celli/ML30412
Exam:

• General exam (out of 31)

• Project can be taken for a maximum of 16 points

• Project can be submitted only once

• Project grades will be kept up until September

Introduction

In a traditional programming setting, the computer is fed an input and a function

and returns an output; within Machine Learning, the computer is given the data and

the output and is asked to return the function that best maps the inputs to outputs.

Machine Learning can extract information from data, but NOT create it.

There are two types of "learning" from data:

Supervised Learning

The algorithm is given labelled input (for example, ECG reading and "heart attack"),

where the labelling is done by experts and the algorithm tries to mimic the labelling.

More formally:

Given training dataset = (x, t) where x are the input, t is the target and an

unknown function f the goal is to find an approximation of f that generalizes well

on test data.

To do so, a loss function L must be defined, an hypothesis space must be defined

and an optimization must be done to find an approximate model h

Unsupervised Learning

In unsupervised learning the core idea is to learn a more efficient representation of a

set of unknown inputs.

http://usemotion.com/meet/andrea-celli/ML30412

Σ

1 Σ

Σ

1 Lecture 1: Loss Function and Model Performance

1.1 Modeling Relationship Between Features and Target

Consider a feature matrix X = [X1, . . . , Xn] and a target variable y. The relationship

between them can be expressed as:

y = f (X) + ε (1)

where ε represents a random error term that is independent of X and has a mean of

zero.

If we assume a linear relationship, the model function f is defined as:

n

f (X) = β0 + βiXi (2)

i=1

Given the infinite possibilities for β values, the optimal set is chosen by defining a

loss function and evaluating the performance of each candidate model.

1.2 Loss Functions

A commonly used loss function in regression problems is the Mean Squared Error

(MSE), defined as:
n

MSE =
n

i=1

2

yi − fˆ(Xi) (3)

where fˆ represents the model’s estimation of the function f . The optimal model

minimizes the MSE on a set T of test observations:

min y − f (x)
 2

(4)
 1 Σ

 ̂
model∈H |T |

(x,y)

In classification problems, Categorical Log Loss is widely used, where:

C

L = − yi log(pi) (5)

i=1

Here, L denotes the loss for a single example, C is the number of classes, yi is a binary

indicator of whether class label i is the correct classification, and pi is the predicted

probability of the observation belonging to class i.

≥

1.3 Model Performance Issues

Underfitting occurs when a model is too simplistic, capturing insufficient patterns

from the data:

• Poor performance on training data.

• The model is overly simplified.

• Low variance in predictions.

This is typically due to a lack of sufficient parameters to account for the complexity

of the data, leading to high bias and low variance.

Conversely, overfitting happens when a model is excessively complex, capturing

noise as patterns:

• High performance on training data but poor generalization to new data.

• The model captures noise as if it were signal.

• High variance in predictions.

This typically occurs in models with too many parameters, resulting in low bias but

high variance.

2 Lecture 2: Optimization

2.1 Unconstrained Optimization

Optimizing a machine learning model typically involves identifying an optimal set of

parameters. This process is guided by an objective function, assumed to be differen-

tiable and designed for minimization. The primary goal is to solve:

min f (x) (6)
x

where f : Rd → R represents the objective function.

2.1.1 Gradient Descent

To minimize said function, we use gradient descent, a first-order optimization algo-

rithm. It seeks a local minimum by updating parameters in the direction opposite

to the gradient of the objective function. Given a suitable small step-size η 0, the

update rule is:

xt = xt−1 − η (∇f (xt−1))T (7)

—

—

Σ

This method converges to a local minimum, although it may slow near the minimum

due to its suboptimal asymptotic convergence rate.

The choice of step-size η is critical in gradient descent:

• A large step-size can cause the algorithm to overshoot the minimum.

• A small step-size can render the convergence time impractically long.

Adaptive methods get away with this by adjusting the step-size dynamically by:

• Increasing the step-size when the function value decreases after a step.

• Decreasing the step-size and revert the last update when the function value

increases, ensuring monotonic convergence.

When utilizing gradient descent, thus solving systems such as Ax = b, convergence

can be slow if the matrix A is poorly conditioned. The convergence rate is influenced

by:
max σ(A)

κ =
min σ(A)

(8)

where κ is the condition number. For ill-conditioned systems, applying a precondi-

tioner P that simplifies P −1(Ax b) = 0 can enhance performance.

Another variant of gradient descent is gradient descent with momentum. This

method incorporates a momentum term to stabilize updates:

xt = xt−1 − η (∇f (xt−1))T + α∆xt−1 (9)

where ∆xt−1 = xt−1 xt−2 and α is the momentum coefficient, which lies between 0

and 1.

2.1.2 Stochastic Gradient Descent (SGD)

For large datasets, computing the exact gradient becomes computationally prohibitive.

SGD approximates the gradient using a random subset of data, thus efficiently esti-

mating the gradient by:
N

L(θ) = Ln(θi) (10)

i=1

This approach leverages the fact that a mini-batch gradient is an unbiased estimate

of the full dataset gradient, making it a practical choice for large-scale optimization.

Σ

D

D L

L

L
D

· ·

y x x y

2.2 Constrained Optimization

In contrast to the unconstrained optimization problems discussed earlier, constrained

optimization introduces limits or conditions that the solution must satisfy. The gen-

eral form of such a problem is:

min f (x)
x

subject to gi(x) ≤ 0 ∀i = 1, . . . , m

We will focus on the convex case, although f and gi may be non-convex in other

contexts.

To handle the constraints, we use Lagrange multipliers, introducing a multiplier

λi ≥ 0 for each constraint. This leads to the Lagrangian function:

m

L(x, λ) = f (x) + λigi(x) = f (x) + λT g(x) (11)

i=1

where g(x) is a vector of all constraint functions gi(x).
Associated with the original problem is its dual problem, which is formulated as:

max (λ)
λ∈Rm

subject to λ ≥ 0

The dual function D(λ) is defined as:

(λ) = min (x, λ) (12)
x∈Rd

which turns each specific λ into an unconstrained optimization problem.

The minimax inequality relevant to duality states:

max min ϕ(x, y) ≤ min max ϕ(x, y) (13)

This inequality allows us to understand the dual problem as:

max min (x, λ) (14)
λ≥0 x∈Rd

It’s important to note that although the functions f () and gi() might be non-

convex, the dual function (λ) is concave. This is due to the linear (affine) nature

of (x, λ) in terms of λ, ensuring that the maximization over λ involves a concave

function.

An equality constraint, such as hj(x) = k, can be represented using two inequality

constraints:

×

L(β̂) =

X β̂ − y

= ||ε||2

(18)
1 2 1

• hj1(x) ≥ k

• hj2(x) ≤ k

This dual formulation allows the use of Lagrange multipliers for equalities similarly

to inequalities.

3 Lecture 3: Ordinary Least Squares

Regression is one of the two fundamental tasks of supervised learning. We will now

introduce the linear regression model, which is (historically) the most used model. In

a more mathematical framework, regression is about learning a model f such that

min y = f (X) + ε (15)
|ε|

Where y is the vector of outputs of dimension n, and X is our feature matrix of

dimension n d and ε is a random vector (noise) with mean 0 and is independent of

X.

The linear regression model assumes that y can be described as a combination of

the d input columns X1, . . . , xd, in other words,

y = Xβ + ε (16)

where β is the vector of parameters of the model.

The goal in supervised machine learning is making predictions fˆ(X∗), where X∗
is data previously unseen and fˆ is the learned values for β. Since we assume that ε
is random with zero mean and independent, it makes sense to replace it with 0 in the

prediction, that is, in a prediction ŷ is equivalent to

ŷ = fˆ(X∗) = X ∗ β̂ (17)

To find the minimum amount of errors, we have to define a loss function. For regres-

sion error usually we use the Mean Squared Error (MSE), which is defined as

n

n

From the perspective of linear algebra, the challenge of linear regression can be

viewed as finding the vector in the column space of X that is closest to y in the

Euclidean sense. This task is accomplished through the orthogonal projection of y
onto the column space of X. The parameters β̂ that achieve this are determined by

solving the equation:

XT X β̂ = XT y (19)

|

|

ε ~

ε

n n

This equation is known as the normal equation. Here, XT X β̂ represents the projec-

tion of y onto the column space of X, ensuring that the difference between y and the

linear combination of columns of X (i.e., the residuals) is orthogonal to the column

space of X, which results in the least squared error between y and the predicted

values. If XT X is invertible, then β̂ has the closed form expression

β̂ = (XT X)−1XT y (20)

The fact that this closed-form solution exists is the reason for why the linear regression

is so common, as other loss functions lead to optimization problems that lack this

type of closed-form solution.

4 Lecture 4: Maximum Likelihood, Categorical Data

4.1 Maximum Likelihood

To get another perspective on the least squared error, we will now redefine our initial

problem as

max p(y X; β) (21)
β

Here p(y X; β) is the probability density of all observed outputs y in the training

data given X and parameters β, however we need to make another assumption about

the distribution of y. A common assumption is ε N (0, σ2I), which is equivalent to

say that the errors follow a normal distribution with mean zero. This in turns means

that

p(y | X; β) = N (y; Xβ, σ2I) (22)

Where N (y; Xβ, σ2I) is the probability of y under the model N (Xβ, σ2I). If we
ε ε

drop within the normal distribution the part that doesn’t depend on β we have that

our original problem becomes

β̂ = arg max
1

·

− ||Xβ − y||2 = arg min
1

· ||Xβ − y||2
(23)

Which is exactly the same as the least square error function.

4.2 Categorical Data

Categorical inputs are variables that represent categories or groups, such as gender

or color, and must be encoded numerically to be used in regression analysis. If

a categorical column i in the feature matrix X has only two categories, it can be

β β

×

|| ||

n

encoded using binary or dummy variables. This encoding assigns one category a

value of 0 and the other a value of 1. For example, if the column represents gender,

males might be coded as 0 and females as 1.

However, if the categorical variable can take on more than two values, the encoding

becomes slightly more complex. This scenario requires one-hot encoding. In one-hot

encoding, each category of the variable is transformed into a new binary column,

ensuring that for each instance, only one of these columns contains a 1 (indicating

the presence of that category), while all others contain 0. Specifically, if the i-th

column of X can take k different categories, the column is expanded into an n k
matrix. Each row l in this matrix contains a 1 in the column corresponding to the

category of the original input and 0s elsewhere.

For instance, if a color variable includes three categories—red, green, and blue—three

new columns are created: one for each color. An observation with the color green

would be represented as (0, 1, 0), indicating that the middle column (green) is the

observed category.

5 Lecture 5: Polynomial Regression, Bias, Variance

5.1 Polynomial Regression

Linear regression might appear to be rigid due to its reliance on a straight line model.

To increase flexibility, we can employ polynomial regression by transforming the input

variables into higher-degree terms. Mathematically, polynomial regression can be

expressed as:

y = β0 + β1x + β2x2 + · · · + ε (24)

Here, the inclusion of x2, x3, . . . allows the model to fit a wider range of data shapes,

thus increasing model complexity. However, adding more terms also raises the risk of

overfitting, as the model’s complexity increases.

One effective method to control overfitting in polynomial regression is through

regularization. By introducing a penalty term, λ β 2 (known as L2 regularization),

we alter the optimization problem to:

β̂ = arg min

1

· ||Xβ − y||2 + λ ||β||2

(25)

Selecting an appropriate value for λ is crucial; too small a value has minimal impact,

whereas too large a value drives all coefficients towards zero, overly simplifying the

model.

β

0

0

TD

5.2 Understanding Bias and Variance

When training models, it is essential to consider both bias and variance, which are

defined as:

Bias: y¯ − y (26)

Variance: Var(y¯ − y) (27)

Here, y¯ is the prediction of our model and y is the actual output. Bias measures

the error introduced by approximating a real-world problem with a simplified model,

while variance measures how much the model’s predictions vary between different

training sets.

5.3 The Generalization Gap and Model Complexity

Model complexity can lead to discrepancies between performance on training data

and unseen testing data, often referred to as the generalization gap. In supervised

learning, particularly in regression, this gap can be quantified through the Mean

Squared Error (MSE) on new data:

MSE Test = E∗

ETD

fˆ(X∗) − f (X∗) − ε

 2

(28)

Where E∗ represents the average error across all possible testing data sets X∗. This

can further be broken down into:

MSE Test = E∗

fˆ(X∗) − f (X∗)

 2

+ E∗

E

fˆ(X∗) − f¯(X∗)
 2

+ σ2

`
B

˛
ia

¸
s2

x `
Var

˛
ia

¸
nce

x Irredu

`
c

˛
ib

¸
l

x
e error

High model complexity typically results in low bias but high variance, indicating a

model that fits the training data well but may not generalize effectively. Conversely,

a model with low complexity might not capture the underlying patterns adequately,

leading to high bias. Balancing these factors is key to minimizing the generalization

gap and improving the robustness of model predictions.

6 Lecture 6: Regularization and Cross-Validation

6.1 L2 Regularization

L2 regularization, also known as Ridge, plays a crucial role in controlling the complex-

ity of the model to prevent overfitting. Ridge regularization shrinks the coefficients

2

∞

|| ||

n 2

n 1

towards zero but typically does not set them exactly to zero, regardless of the value

of λ, unless it is infinitely large. This characteristic ensures that all features are in-

cluded but with reduced influence, making Ridge less effective for variable selection

compared to Lasso.

The optimization problem for Ridge regularization within a linear regression frame-
work is given by:

β̂ = arg min

1

· ||Xβ − y||2 + λ ||β||2

(29)

where ||β||2
denotes the L2 norm of β, which is the sum of the squares of the coeffi-

cients.

Ridge regularization affects all coefficients by applying a penalty proportional

to the square of the magnitude of coefficients. This squared term ensures that the

penalty increases significantly as the coefficients grow, making it very effective at

controlling large values of coefficients, thus leading to more stable and generalizable

models. The L2 norm, visualized as spherical contours in parameter space, ensures

that the solution to the optimization problem lies within these spherical bounds,

gently pulling all coefficients towards zero as λ increases, but never exactly setting

any to zero.

This form of regularization is especially beneficial in situations where model pre-

diction is more critical than interpretation, as it includes all variables but regulates

their impact through shrinkage.

6.2 L1 Regularization

As we previously explored, incorporating L2 regularization, also known as Ridge,

reduces the risk of overfitting. However, Ridge has a notable limitation: it never sets

any coefficient to zero unless λ = . This behavior might not significantly affect

prediction accuracy but can complicate model interpretation, particularly when the

dimensionality d (the number of predictor variables in X) is substantial. On the

other hand, L1 regularization, commonly referred to as Lasso, addresses this issue

effectively. Within a linear regression framework, the optimization problem for Lasso

is formulated as:

β̂ = arg min

1

· ||Xβ − y||
2

+ λ ||β||

(30)

where β 1 denotes the L1 norm of β, which is the sum of the absolute values of the

coefficients.

Like L2, the L1 penalty shrinks the coefficients towards zero. However, a dis-

tinctive feature of L1 regularization is its ability to set some coefficients exactly to

zero when λ is sufficiently large. This phenomenon occurs because the L1 norm is

β

β

|| ||

λ 2

not differentiable at zero, which introduces points of non-differentiability in the ob-

jective function. As a result, during the optimization process, some coefficients can

converge precisely to zero. Consequently, Lasso not only helps in reducing overfitting

by regularization but also performs variable selection. This attribute allows Lasso to

produce sparse models — models that involve only a subset of the available variables,

enhancing model simplicity and interpretability.

The reason why L1 regularization can result in some coefficients being exactly

zero lies in its geometric interpretation and the properties of the L1 norm. The L1

norm penalty, λ β 1, encourages sparsity because it imposes a constant penalty for

any non-zero coefficient. This form of regularization can be visualized as bounding

the coefficients within a diamond-shaped (in two dimensions) or a rhomboid-shaped

(in higher dimensions) contour, centered at the origin.

As the value of λ increases, the size of these contours decreases, pulling the coeffi-

cient estimates towards the origin. In higher dimensions, the corners of these contours

lie along the axes, and it is more probable for the optimization solution to hit these

corners where some of the coefficients are exactly zero. In contrast, the L2 norm

creates circular (or spherical in higher dimensions) contours, which do not promote

sparsity as their boundaries never touch the axes unless the radius is zero.

Thus, by employing L1 regularization, we can achieve a model that is not only

less prone to overfitting but also more interpretable due to its simplicity in involving

fewer variables.

6.3 Bayesian Interpretation of L1 and L2 Regularization

Regularization techniques can also be interpreted through a Bayesian lens, where they

correspond to introducing specific prior distributions on the regression coefficients.

This perspective connects regularization with Bayesian inference, where regularization

parameters are viewed in terms of prior beliefs about the values of the coefficients.

6.3.1 Bayesian Interpretation of L2 Regularization (Ridge)

L2 regularization, or Ridge regression, can be understood as placing a Gaussian prior

on the coefficients β. Specifically, this is equivalent to assuming that each coefficient

βi is drawn from a normal distribution centered at zero with a variance inversely

proportional to the regularization parameter λ:

βi ∼ N(0, σ2) (31)

where σ2 = 1 . Under this framework, the Ridge penalty λ ||β||2
corresponds to the log

of the Gaussian prior probability. The effect of this prior is to shrink the coefficients

towards zero, with stronger shrinkage as λ increases, reflecting a stronger belief that

the coefficients are small.

6.3.2 Bayesian Interpretation of L1 Regularization (Lasso)

L1 regularization, or Lasso, implies a Laplace prior distribution on the coefficients

β. This corresponds to assuming that each coefficient βi is drawn from a Laplace

distribution centered at zero, which is characterized by a probability density function:

λ
p(βi) =

2
exp (−λ|βi|) (32)

Here, the regularization parameter λ controls the diversity of the distribution; higher

values of λ create a sharper peak at zero, encouraging stronger sparsity. This Lapla-

cian prior leads to a probability distribution with heavier tails and a sharp peak

at zero, which makes it more likely for the coefficients to be exactly zero, thereby

promoting sparsity.

6.3.3 Implications of Bayesian Priors

The choice between Ridge and Lasso in a regression model can thus be viewed as a

choice between believing that the true coefficients are small but non-zero (Gaussian

prior) versus believing that many coefficients are exactly zero with some potentially

large outliers (Laplace prior).

6.4 Cross-Validation

Cross-validation is a statistical method used to estimate the generalization error of a

model, especially when a large dataset for testing is not available. The process involves

holding out a subset of the training data from the fitting process, then applying the

statistical model to these held-out observations to evaluate performance.

6.4.1 Validation Set Approach

A straightforward method of cross-validation is the validation set approach, where

the dataset is randomly divided into a training set and a validation set. The model

is trained on the training set and evaluated on the validation set. This method

provides a rough estimation of model performance. However, the performance can

vary significantly with different splits of the data, indicating the potential instability

and bias of this method.

n

—

k

|

|

n

k

i=1

i=1

6.4.2 Leave-One-Out Cross-Validation (LOOCV)

Leave-One-Out Cross-Validation (LOOCV) is a more intensive approach compared

to the validation set method. In LOOCV, the model is fitted n times for a dataset

with n entries, each time leaving out one data point. The omitted data point is used

as the test set for that iteration. The LOOCV estimate of the model’s performance

is given by:

LOOCV =
1 Σ

MSE

(33)

where MSEi is the mean squared error of the prediction for the left-out data point in

the i-th iteration. Although LOOCV is excellent for reducing bias in model evaluation,

it is computationally expensive as it requires fitting the model n times.

6.4.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold cross-validation, which balances computational

efficiency with model evaluation bias. In k-fold cross-validation, the dataset is divided

into k equal parts. The model is then trained k times, each time using k 1 subsets as

the training data and the remaining subset as the test set. This approach is expressed

mathematically as:

k-Fold CV Error =
1 Σ

MSE

(34)

where MSEi is the mean squared error on the left-out subset during the i-th iteration.

Choosing k < n results in a process that is less computationally demanding than

LOOCV, but it may introduce more bias into the estimation of the model’s error.

7 Lecture 7: Classification

If we have a classification problem, we need a way of defining P[Y X]. Unlike

regression methods which can (and will!) output negative values, classification models

can provide meaningful estimates for P[Y X], particularly important in multi-class

settings.

7.1 Logistic Regression

Logistic regression is a fundamental classification method. It differs from typical

regression as it estimates the probability of an observation belonging to a class rather

i

i

Y Y

1 − p(Xi)
1

than directly assigning a class. The probability that observation Xi belongs to a

certain class is given by the logistic function:

eβ0+β1Xi

p(Xi) =
1 + eβ0+β1Xi

(35)

Through some algebraic manipulation, we can express this as:

log

 p(Xi)

= β

+ β X

(36)

This transformation is known as the logit of p(Xi), which interestingly shows that the

logit is linear with respect to X.

Estimation via Maximum Likelihood: To determine the best parameters

for our logistic model, we employ the maximum likelihood estimation method. The

likelihood function for a set of parameters β0 and β1, considering a binary classification

scenario, is formulated as:

L(β0, β1) =
i:yi=1

p(Xi)
j:yj =0

(1 − p(Xj)) (37)

Maximizing this function with respect to the parameters yields the estimates βˆ
0 and

β̂ 1 , which are used in predicting new data points.

7.2 Multivariable Logistic Regression

Multivariable logistic regression extends the simple logistic regression model to ac-

commodate multiple predictors. This model is particularly useful for scenarios where

the outcome depends on more than one explanatory variable.

7.2.1 Model Formulation

In the multivariable logistic regression, we model the probability that an obser-

vation belongs to a particular class as a function of several input variables. If

Xi = (1, Xi1, Xi2, . . . , Xip)T is a vector representing the predictors for the i-th ob-

servation and β = (β0, β1, β2, . . . , βp)T is the vector of coefficients, the probability is

given by:

eβT Xi

p(Xi) =
1 + eβT Xi

(38)

This can be rearranged using the logit transformation:

log
 p(Xi)

= βT X
1 − p(Xi)

(39)

0 i

i

Y Y

jk

jl

This equation shows that the logit (the logarithm of the odds) is a linear combination

of the predictors.

7.2.2 Parameter Estimation

The estimation of parameters in a multivariable logistic regression is typically per-

formed using maximum likelihood estimation (MLE). The likelihood function for the

logistic model, given binary outcomes across observations, is:

L(β) =
i:yi=1

p(Xi) (1 − p(Xj)) (40)

j:yj =0

Maximizing this likelihood function with respect to β provides estimates β̂ , which

best explain the observed relationships between predictors and the outcome variable.

Note: The optimization of this likelihood function is typically performed nu-

merically using iterative methods such as Newton-Raphson or gradient descent, as

analytic solutions are not feasible due to the complexity of the model.

7.3 Multivariate Logistic Regression

Multivariate logistic regression, also known as multinomial logistic regression when

each outcome is a category, allows for the modeling of scenarios where there are

multiple dependent categorical variables. This is particularly useful for understanding

complex relationships where outcomes influence each other.

7.3.1 Model Formulation

In multivariate logistic regression, we aim to model multiple responses simultaneously.

Let Yi be the vector of responses for the i-th observation and Xi be the corresponding

vector of predictors. If each element of Yi can take on values from a set of categories,

the model provides probabilities for each category for each response variable.

The model uses a set of coefficients for each response variable, creating a matrix

of coefficients β. Each row of β corresponds to a different response variable, and each

column corresponds to a predictor. The probability of observing a particular category

for each response variable is modeled similarly to the binary logistic regression but

extended across multiple equations:

ij i

eβT Xi (41)
p(Y = k | X) = Σ

eβT Xi

L

where βjk is the coefficient vector for the j-th response in category k, and the de-

nominator ensures that the probabilities sum to one.

Y Y Y
)) (42)

|

7.3.2 Parameter Estimation

The parameters of a multivariate logistic regression model are usually estimated using

maximum likelihood estimation. The likelihood function considers the joint proba-

bility distribution of the response vector given the predictors, which is the product

of the probabilities for each category of each response:

n m Kj

L(β) = (p(Yij
i=1 j=1 k=1

= k | X 1(Yij =k)
i

where n is the number of observations, m is the number of response variables, Kj is

the number of categories in the j-th response, and 1(Yij = k) is an indicator function

that is 1 if Yij = k and 0 otherwise.

Note: This model is more computationally intensive due to the larger number

of parameters and the complexity of the likelihood function. Techniques such as

Expectation-Maximization (EM) or specialized optimization algorithms may be nec-

essary to find the best-fit parameters.

This extension of logistic regression allows for a nuanced analysis of complex

datasets with interdependent outcomes, providing a deeper insight into the underlying

processes that generate the data.

8 Lecture 8: GLMs and Non-Parametric Methods

8.1 Generalized Linear Models

Generalized Linear Models (GLMs) are a versatile class of models that extend tradi-

tional linear regression to accommodate response variables, y, that are not necessarily

continuous, such as counts or categorical data. This is achieved by specifying a suit-

able probability distribution for the response variable, p(y Xi; θ), and linking it to

a linear predictor through a function.

8.1.1 Components of a GLM

GLMs consist of three primary components:

• Random Component: Specifies the probability distribution of the response

variable, y, which typically belongs to the exponential family (e.g., Gaussian,

Binomial, Poisson).

• Systematic Component: The linear combination of predictors, Xi, denoted

as z = β0 + β1X1 + · · · + βnXn.

|

j

j

j

j

j

j

• Link Function: A function, ϕ, that relates the expected value of the response

variable to the linear predictor, z. The relationship is given by E[y Xi; θ] =
ϕ−1(z).

8.1.2 Example: Logistic Regression

A common example of a GLM is logistic regression, where the response variable is

categorical (e.g., binary). The probability distribution of y is modeled using the

binomial distribution, and the link function is the logistic function. This function is

defined as:

ϕ(µ) = log
 µ

(43)
1 − µ

where µ is the probability of one of the outcomes (e.g., success). The inverse of this

link function, ϕ−1(z), which is the logistic function, transforms the linear predictor

into a probability:
ez

µ = (44)
1 + ez

8.2 k-Nearest Neighbours

k Nearest Neighbors (k-NN) is a non-parametric method that can be used for both

classification and regression. This method assumes that similar inputs have similar

outputs, making predictions based on the outputs of the nearest training examples.

8.2.1 The Algorithm

The steps involved in the k-NN algorithm are as follows:

1. Distance Calculation: Compute the Euclidean distance between the test

point X∗ and each training point Xi, represented as:

¨Xi − X∗¨

2. Identify Nearest Neighbors: Sort all points by their distance to X∗ and

select the top k closest points.

3. Aggregate Neighbors’ Outputs: For regression, predict by averaging the

outputs yi of these k neighbors. For classification, use the mode of yi. The

neighborhood of X∗ is defined by:

N∗ = {i : Xi is one of the k nearest training datapoints to X∗}

and the prediction is given by:

fˆ(X∗) = aggregate({yi : i ∈ N∗})

2

L

j ℓ j

ij

ℓ=1

8.2.2 Choice of k

The hyperparameter k plays a crucial role in the performance of the k-NN algorithm:

• A smaller k makes the algorithm sensitive to noise in the data.

• A larger k provides smoother predictions but may include less similar points,

which can reduce accuracy.

Optimal k is usually selected via cross-validation.

8.2.3 Data Normalization

Due to the reliance on distance calculations, it is crucial to normalize the data so that

each feature contributes equally to the distance. This is particularly important when

features vary in scale and range.

Min-Max Scaling This technique scales each feature to a [0, 1] range indepen-

dently, enhancing the uniformity of influence among features. The transformation for

each feature column j is computed as:

′
=

 Xij − min(Xj)

max(Xj) − min(Xj)

where Xij is the original value, and min(Xj) and max(Xj) are the minimum and

maximum values of the feature column j, respectively.

8.3 Decision Trees

Decision trees are rule-based models that explicitly partition the input space using a

set of decision rules. These models are structured with various nodes and branches:

the terminal points of each branch are called leaf nodes, and the decision points leading

to further branches are referred to as internal nodes. The lines connecting the nodes

are known as branches, and when an internal node divides into two branches, it is

described as binary.

8.3.1 Regression Tree

We will start by discussing how to train a decision tree in a regression problem. The

prediction fˆ(X∗) is a piecewise constant function of X∗ and can be written as:
j j

fˆ(X∗) =
Σ

fˆℓ1{R }(X∗) (45)

X

j ∈

j

j ℓ j

where L is the total number of regions (leaf nodes), Rℓ is the ℓth region, fˆℓ is the
constant prediction for said region, and 1{R }(X∗) is the indicator function, which

ℓ j

equals 1 if X∗ Rℓ and 0 otherwise. Training the tree involves finding suitable values

for the parameters defining the function, namely the regions Rℓ and the constant

predictions.

8.3.2 Classification Tree

Classification trees, similar to regression trees, use a set of rules to determine the

class label for a given input X∗. In classification, the prediction fˆ(X∗) is typically
j j

the class that occurs most frequently within the leaf node:

fˆ(X∗) = mode{yi : Xi ∈ Rℓ and 1{R }(X∗) = 1} (46)

where Rℓ is the region corresponding to the leaf node that contains X∗, and yi are

the class labels of the training instances in Rℓ. Training a classification tree involves

creating splits that maximize the purity of each node, using criteria such as Gini

index or entropy, to ensure that each leaf is as homogeneous as possible in terms of

class distribution.

8.3.3 Criteria for Splitting in Decision Trees

In decision trees, the choice of the best split at each node is crucial to reduce the

complexity and increase the accuracy of the model. Several criteria can be used to

measure the quality of a split, including the misclassification rate, Gini index, and

entropy. These measures help determine which feature and threshold should be used

to divide the node into child nodes.

Misclassification Rate The misclassification rate is the simplest criterion for eval-

uating splits. It is calculated as the proportion of the most common class in a node

minus one:

Misclassification Rate = 1 − max(proportion of class k) (47)

where the proportion of class k is the number of instances of class k in the node divided

by the total number of instances in the node. This criterion seeks to minimize the

error directly but may not be sensitive enough for trees with more than two classes

or imbalanced class distributions.

Σ

Σ

Gini Index The Gini index measures the impurity of a node. A node is pure (Gini

= 0) when all its cases belong to a single class. The Gini index for a node is computed

as:
K

Gini Index = 1 − (pk)2 (48)

k=1

where pk is the proportion of class k instances within the node, and K is the number

of classes. The Gini index is a measure of the total variance across the classes in the

node. It is particularly effective for categorical targets where the variable does not

have a huge number of categories.

Entropy Entropy, a concept borrowed from information theory, measures the ran-

domness or uncertainty within a node. The entropy for a dataset is zero when it

contains instances of only one class. It is calculated using the formula:

K

Entropy = − pk log2(pk) (49)

k=1

where pk is the proportion of class k instances in the node. A split that results in the

largest decrease in entropy is considered the best split. Entropy is particularly useful

for training classification trees because it gives the best possible reduction in entropy

after each split.

Each of these splitting criteria aims to optimize different aspects of the tree’s

structure and classification power. Typically, the choice of splitting criterion can

have a significant impact on the performance of the decision tree model.

9 Lecture 9 - 10: Support Vector Machines

Support Vector Machines (SVMs) are a sophisticated development of a simpler clas-

sifier known as the Maximal Margin Classifier. This simpler form is often impractical

as it requires that all classes be linearly separable with a linear boundary.

9.1 Maximal Margin Classifier

A Maximal Margin Classifier identifies a type of hyperplane in a d-dimensional space.

A hyperplane is a flat, d − 1 dimensional subspace defined by the equation:

wT x = 0 (50)

where w and x are a vector in Rd. If x satisfies the equation, it lies on the hyperplane.

Values greater than or less than 0 indicate the vector’s position relative to either side

of the hyperplane.

× ∈ {− }

 1

w i w
i i

9.1.1 Classification using a Hyperplane

Consider a feature matrix X of dimensions n d, with labels yi 1, 1 for i =
1, . . . , n. If it’s possible to perfectly separate the classes with a hyperplane, such a

hyperplane must satisfy:

yi(wT Xi) > 0 ∀i = 1, . . . , n (51)

A natural classifier then assigns a class based on the sign of:

fˆ(Xi) = wT Xi (52)

The magnitude of fˆ(Xi) can also indicate the confidence in its classification and if

 w = 1 then the margin is called the geometric margin

9.1.2 The Maximal Margin Classifier

If data are linearly separable, many separating hyperplanes are possible. The optimal

choice is the maximal margin hyperplane, which maximizes the distance (margin)

from the nearest training observations. This hyperplane is computed by solving the

following optimization problem:

max min

y (wT X)

(53)

subject to yi(wT Xi) ≥ 1, ∀i = 1, . . . , n. (54)

where min is the minimal distance between the hyperplane and any observation of
i

the feature matrix X. This is called the maximal margin classifier or hard margin

classifier. This problem is very difficult, as we have a nested max-min, and can be

reformulated as

max
w: w =1

M (55)

such that yiwT Xi ≥ M ∀i = 1, . . . , n. (56)

or equivalently

min
w

1
w 2 (57)

2
such that yiwT Xi ≥ 1 ∀i = 1, . . . , n. (58)

1 Σ

≥

+

→

n

g:X→y
TR

n
i i

w n
i i

n

i=1

i=1

9.2 Support Vector Classifiers

The support vector classifier, also called soft margin classifier, rather than seeking the

largest possible margin so that every observation is on the correct side of the margin

(and of the hyperplane) we allow some observation to be on the incorrect side of the

margin (and even hyperplane).

The support vector classifier is the hyperplane that separates most of the train-

ing observations but may misclassify a few observations. It is the solution to the

optimization problem

min
w,ξ

λ
w 2 + ξ

2 n i
(59)

i=1

such that yi(wT Xi) ≥ 1 − ξi, ∀i = 1, . . . , n (60)

and ξ ≥ 0, ∀i = 1, . . . , n. (61)

Where ξ1, . . . , ξn are slack variables that allow individual observations to be on the

wrong side and λ is the tradeoff parameter; if λ is very small we want as few points

in the margin as possible, while on the contrary if λ is very large, we are comfortable

with more and more observations within the margin.

Note: misclassification only happens for ξi 1.

The maximization problem can be rewritten as
n

λ 1 Σ min w 2 + 1 − y wT X (62)
w 2 n

i=1 ̀
i i

hing

˛
e

¸
loss

x

where [α]+ = max{α, 0}. This is a form of regularized empirical loss minimization.

We can derive (61) using the risk minimization framework; given X, y ∼ D we want

to find the classifier g : X → y with the lowest possible risk, which is

L(g) = PD(y ̸= g(X)) (63)

we don’t know D and for this reason we use empirical risk minimization,
n

1 Σ
min L (g) = 1(y g(X) ≤ 0) (64)

However this problem is not convex; to circumvent this, we take a convex function

ϕ : R R which is always greater than (or equal) than the 0-1 loss and minimize

that function. In this case we take the hinge loss, which penalises more if it’s not

confident enough or if it’s far from the border. Then once we have the surrogate we

compute

min
1 Σ

ϕ(y wT X) (65)

1

n

w w
a∈[0,1]n n

i i i
2 2

w
n

i i i

λn
i i i

λn

a∈[0,1]n

i=1

i=1

i=1

9.2.1 How to compute w

We have now a convex problem that, however, is not smooth (as the hinge loss is

not differentiable at 1). To circumvent this problem we can either use subgradient

descent (see the next subsection) or define an auxiliary function g(w, a) such that

min L(w) = min max g(w, a) (66)
w w a

But first we have to define a good g, in this case we take it to be

g(w, ai) = max
ai∈[0,1]

ai(1 − yiwT Xi (67)

Then the problem becomes

min L(w) = min

max

1 Σ
a (1 − y wT X) +

λ
 w 2

(68)

If g is convex in w and concave in a and the domains of w, a are convex and compact

then
min max g(w, a) = max min g(w, a) (69)

w a a w

where we say that a domain is convex if, for every pair of points within the domain,

every point on the straight line segment that joins them is also within the domain. A

domain is compact if it is closed and bounded; that is, it contains all its limit points,

and its size is limited. As this condition is satisfied in Support Vector Machines we

can exchange the min and max.

We can now solve the inner problem by taking its gradient, namely
n

∇ G(w, a) = −
1 Σ

a y X + λw (70)

setting it to 0 we can express w as a function of a,
n

w(a) =
 1 Σ

a y x =
 1

XT ya (71)

where a is a row vector and y is a column vector. Now the dual problem becomes

 max a 1 − y X X ya

+ X ya (72)
1 Σ

1 T T T 2
a∈[0,1]n n

which is equal to

i

max

λN i

1T a

—

i

1
aT yXXT

ya (73)

n 2λn 2

∈

∈

∇
∇

And this problem is differentiable and concave and can be solved either through

quadratic programming solvers or coordinate ascent methods. The loss function de-

pends on the data only through the kernel matrix K = XXT Rn×n which does not

depend on the dimensionality of the feature matrix, d.

a is tipically sparse and = 0 only for the training observation necessary for deter-

mining the decision boundary. There are three cases:

• ai = 0, which means that the Xi is a non-support vector

• ai [0, 1] which means that Xi is an essential support vector (right side but on

the margin)

• ai = 1 which means that Xi is a bound support vector (wrong side or strictly

inside the margin)

Explanation of Subgradient Descent

Subgradient descent is a variant of the gradient descent method used for minimizing

non-differentiable functions. It is particularly useful in optimization problems where

the objective function does not have a derivative at some points, as is the case with

the hinge loss function at 1.

In gradient descent, we update the variable x using the formula:

xnew = xold − α∇f (xold)

where α is the learning rate and f (xold) is the gradient of the function f at xold.

For non-differentiable functions, the gradient f at certain points does not exist.

Instead, we use a subgradient, which is any vector g that satisfies:

f (y) ≥ f (x) + gT (y − x), for all y

The subgradient is not unique, and any vector that satisfies the above condition can

be used as a subgradient.

The update rule in subgradient descent then becomes:

xnew = xold − αg

where g is a subgradient of f at xold. The choice of the subgradient and the learning

rate α significantly impacts the convergence properties and the solution’s quality.

Subgradient methods are typically slower in convergence compared to gradient

descent for smooth problems, and careful tuning of the learning rate is necessary to

achieve good performance.

→ ∞

n

i

×

i

i

.

n
i 2

ϕ(x2)T ϕ(x1) ϕ(x2)T ϕ(x2) · · · ϕ(x2)T ϕ(xn)

.
.

i=1

11 Lecture 11: Kernel Methods

11.1 Kernel Ridge Regression

Sometimes, as we have seen in lecture 5, it makes sense to transform the input data

with some function ϕ, for example we can take a feature matrix X where Xi = [xi1, xi2]
and transform it into Φi = [xi1, xi2, xi1xi2].

A carefully engineered Φ may perform extremely well for a specific machine learn-

ing problem, however we would like Φ to contain a lot of transformations that could

possibly be of interest for most problems, letting d , where d is the dimensionality

of Φ.

First of all, however we have to use some kind of regularisation if we are going

to increase d in order to avoid overfitting. Recall that the equation for L2 linear

regression is

β̂ = arg min
1 Σ

(βT Φ − y)2 + λ β
2 = (ΦT Φ + nλI)1 ΦT y (74)

The problem is that for d very large, if we want to compute a prediction, we have to

learn d parameters and store the d-dimensional vector β̂ . The first step is to realise
that the predictions can be rewritten as

fˆ(X∗) = yT Φ

ΦT Φ + nλI
 −1

ϕ(X∗) (75)
i `˛¸x ̀ ˛¸x ̀ ˛¸ x ̀ ˛¸i x

1×n n×d

`
d×d

n
˛

×
¸

1

d×1

x

This expression suggests that for each test input we could compute the n-dimensional

vector Φ(ΦT Φ + nλI)−1ϕ(X∗); by doing so, we avoid storing a d-dimensional vector

but we would still have to invert a d d. As the push-through matrix identity states

that A(AT A + I)−1 = (AAT + I)−1A for any matrix A we could rewrite our equation

to be
fˆ(X∗) = yT (ΦΦT + nλI)−1 Φϕ(X∗) (76)

`
1
˛

×
¸

n
x ̀

n
˛

×
¸

n
x ̀

n
˛

×
¸

1
x

It appears that we can compute fˆ(X∗) without having to deal with any d-dimensional

vector or matrix, provided that the multiplications can be computed. Examining ΦΦT
we can see that

ϕ(x1)T ϕ(x1) ϕ(x1)T ϕ(x2) · · · ϕ(x1)T ϕ(xn)

ΦΦT = .

.
(77)

ϕ(xn)T ϕ(x1) ϕ(xn)T ϕ(x2) · · · ϕ(xn)T ϕ(xn)

i

β

Σ

each entry is an inner product, which is a scalar. If we are able to compute that inner

product directly, without explicitly computing each ϕ(x), we have reached our goal.

11.2 The Kernel Trick

The kernel trick is a powerful technique in machine learning that facilitates the han-

dling of high-dimensional feature spaces without the need to explicitly compute the

coordinates of the data points in that space. This is achieved by defining a kernel

function k(x, x′) that computes the inner products between the images of the data in

the feature space:

k(x, x′) = ϕ(x)T ϕ(x′) (78)

where ϕ is a mapping from the input space to the feature space.

Mercer’s Theorem plays a crucial role in the kernel trick. It states that a kernel

function k(x, x′) corresponds to an inner product in some feature space if and only

if the corresponding kernel matrix K is symmetric and positive semi-definite. This

matrix K, with elements Kij = k(xi, xj), is known as the Gram matrix.

The Representer Theorem provides a theoretical justification for the kernel

trick. It asserts that any function that minimizes a regularized risk functional over a

reproducing kernel Hilbert space can be expressed as a linear combination of kernel

functions evaluated at the training data points:

n

fˆ(x) = αik(xi, x) (79)

i=1

where αi are coefficients determined through the learning process. This theorem

demonstrates that the complexity of the model is inherently controlled by the number

of training samples, rather than the dimensionality of the feature space, facilitating

computation in very high-dimensional spaces.

In the context of Kernel Ridge Regression, the kernel trick allows us to refor-

mulate the regression function as follows:

fˆ(X∗) = yT (K + nλI)−1k(X∗) (80)

where k(X∗) is a vector consisting of k(xi, X∗) for each training point xi. This model

avoids the explicit computation of the feature vectors ϕ(xi), using instead the kernel

matrix K to achieve efficient computation. The kernel approach provides a practical

way to handle situations where the dimensionality of the feature space is extremely

large or even infinite.

By exploiting properties of kernel functions and the structure of data, the kernel

trick significantly simplifies computations in machine learning algorithms and enables

the application of linear methods to solve nonlinear problems.

{ ∈ }

{ ∈ }

i

i

i

i

i

i

i ~ N i ; i , i i i

i i i

pred i i i i i

f (X) f (X) µ(X) κ(X, X∗) κ(X, X)

12 Lecture 12: Gaussian Processes

A Gaussian Process (GP) is a specific type of stochastic process that generalizes the

concept of multivariate Gaussian distributions to infinite dimensions. A stochastic

process corresponds to a collection of random variables z(t) : t R indexed by

time t. In this context, each time point t corresponds to a random variable z(t),
and the values at different time points are correlated. This correlation depends on

the difference between time points, x, and can be generalized to functions of random

variables, f (x) : x X , where X is the input space of dimension d.

In the Gaussian process model, we begin by considering the case where the input

variable x is discrete and can only take q different values. In this setting, the function

f can be characterized by a q-dimensional vector f = [f (x1), . . . , f (xq)]T . This vector

f is modeled as a random function by assigning it a joint probability distribution

which is multivariate Gaussian:

p(f) = N(f ; µ, Σ) (81)

However, for a Gaussian process on a continuous input space, we extend this by letting

the index set be continuous and replacing the vector f with a random function f . The

Gaussian process is then fully specified by its mean function µ(x) and a covariance

function κ(x, x′). We will use then the notation

f ∼ GP(µ, κ) (82)

For a new, unseen point X∗, the Gaussian process prescribes that the joint distri-

bution of the observed outputs f (X) and the output at the new point f (X∗) is given

by:
f (X∗)

f (X∗)

µ(X∗)

κ(X∗, X∗) κ(X∗, X)T

where X represents the set of all input points corresponding to the outputs in f . The

covariance between f (X∗) and f (X) is governed by the kernel functions, reflecting

the underlying assumptions about the function’s smoothness and variability.

The predictive distribution for f (X∗) given the observed data is a normal distri-

bution with mean and variance specified by conditioning on the observed data. The

mean and covariance for the prediction at X∗ are computed using the formulas:

µpred(X∗) = µ(X∗) + κ(X∗, X)κ(X, X)−1(f (X) − µ(X)) (84)

σ2 (X∗) = κ(X∗, X∗) − κ(X∗, X)κ(X, X)−1κ(X, X∗). (85)

p (83)

Σ

≤

13 Lecture 13-14: Ensemble Methods

13.1 Bagging

Bagging, which stands for Bootstrap Aggregating, is an ensemble method designed

to improve the stability and accuracy of machine learning algorithms. It reduces

variance and helps to avoid overfitting. Although it is usually applied to decision tree

methods, it can be used with any type of method. Bagging involves creating multiple

versions of a predictor and using these to get an aggregated predictor.

The process of bagging involves:

1. Creating multiple subsets of the original dataset with replacement, known as

bootstrap samples.

2. Training a model on each of these subsets.

3. Combining the models using the average of predictions from all models for

regression tasks or a majority vote for classification tasks.

The mathematical representation of bagging for classification can be expressed as:

fˆbag(x) = mode{fˆ(1)(x), fˆ(2)(x), . . . , fˆ(B)(x)} (86)

where fˆ(b)(x) is the prediction of the b-th model trained on the b-th bootstrap sam-

ple. For regression problems, the aggregate prediction is typically the average of the

predictions:

fˆbag(x) =
 1

B

B

fˆ(b)(x) (87)

b=1

where B is the number of bootstrap samples (models).

The bias (or average) stays the same, but the variance is reduced by

1 − ρ
σ2 + ρσ2 (88)

B

Where ρ is how correlated the base models are and σ2 is their variation

13.2 Random Forest

The idea behind random forest is similar to bagging, however instead of considering

all possible p variables as splitting variables, we only consider q p, with the subset

p changing at every node split

Σ

Σ

t
2 ϵ

13.3 Adaboost

AdaBoost (Adaptive Boosting) is an ensemble technique that combines weak learners

(typically decision stumps) into a strong learner in a sequential manner. Each weak

learner is trained on the entire dataset but with different sample weights, which are

adjusted to focus more on previously misclassified instances.

Given: Training data (x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1}

Initialize: D (i) =
1

for i = 1, . . . , n
1 n

For t = 1 to T :

1. Train weak learner ht using weights Dt
n

2. Compute error ϵt = Dt(i)I(yi ̸= ht(xi))
i=1

3. Compute weight α =
1

log

1 − ϵt

4. Update weights Dt+1 (i) =
Dt(i) exp(−αtyiht(xi))

Zt
where Zt is a normalization factor

Output: H(x) = sign

T

t=1

αtht(x)

!

13.4 Gradient Boosting

Gradient Boosting is an additive model that fits new predictors to the residual errors

made by the previous predictors. Unlike AdaBoost, it does not tweak the weights of

training instances but instead fits the new model to the residual errors.

t

Σ

—

Σ

∈

→

Given: Training data (x1, y1), . . . , (xn, yn)
n

Initialize: F0(x) = arg min L(yi, γ)
γ

For t = 1 to T :
i=1

1. Compute residuals rti =
∂L(yi, F (xi))

∂F (xi)

F (x)=Ft−1(x)

for i = 1, . . . , n

2. Fit a learner ht(x) to residuals rti to predict rti
n

3. Compute γt = arg min L(yi, Ft−1(xi) + γht(xi))
γ

i=1

4. Update model Ft(x) = Ft−1(x) + γtht(x)

Output: FT (x)

15 Lecture 15: Introduction to Neural Networks

We start with the description of the neural network model

fˆ(x) = βT x + b (89)

Where the weights are β1, . . . , βd offset by a term b and the input vector x Rd. To

describe non-linear relationships between x and fˆ(x) we introduce a non-linear scalar

function called activation function h : R R, where the linear regression model is

modified into a generalised linear regression model where the linear combination of

the inputs is transformed by h

fˆ(x) = h(βT x + b) (90)

with common choices being the logistic function h(x) =
1

1 + e−z and rectified linear

unit (ReLU) h(x) = max(0, x).
The Generalised Linear Model is very simple and unable to describe the complicated

relationship between x and fˆ(x), for this reason we use several parallel generalised
linear regression models to build a layer and then stack these layers in a sequential

construction.

In the equation (90), the output is constructed by one scalar regression. To

increase its flexibility, we instead let its output be a sum of U generalised linear
regression models. The parameters for the k-th regression model are b(1), W (1) =

k k

W
(1)
1d b

2d

.

(1)

ΣM

n

21

.
22

. . ..
 b(1) = 2

1 U

ez1

n
i i

i=1

β1, . . . , βd and denote its output by qk, which is reached by using the various betas

and the bias b in equation (90). The outputs of this first layer is then fed into the

second layer, where the output is

fˆ(x) = W (2)q1 + · · · + W (2)qU + b(2) (91)

In vector notation,

(1)
11
(1)

1

(1)
12

W (1)

U

· · · W (1)

· · · W

(1)
1

b(1)

.
(1)
U 1

.
(1)
U 2

.

· · · WUd

.
(1)
U

W (2) =
h

W (2), . . . , W (2)
i

b(2) = [b(2)] (93)

The two-layer neural network is a useful method on its own, however the real de-

scriptive power of a neural network comes when multiple of such layers are stacked

together, achieving a deep neural network. Each layer maps a hidden layer

q(L) = h(W (L)q(L−1) + b(L)) (94)

If we use classification, we simply set h to be the softmax, defined as

1 ez2

h(x) =
j=1

ezj .

ezM

(95)

16 Lecture 16: Training a neural network

In a neural network, we find the suitable values for the parameters θ by solving the

following optimization problem

θˆ = arg min J(θ) = arg min
1 Σ

L(X , y , θ) (96)

Where J(θ) is the cost function. The functional form of the los function depends on

the problem (MSE for classification, Cross-entropy for multiclass logistic regression),

and the optimization is usually done through gradient descent.

The backpropagation algorithm is an important ingredient in almost all procedures,

W

W

. .

W W b

W (1) =
. .

(92)

θ θ

· · ·

Σ F

×

Σ F

which is how the gradients and the cost function are calculated with repsect to all

the parameters. To summarize, we want to find

dW(L) = ∇∂W

(l) J(θ) =

∂J(θ)

(l)
1,1

.

 ∂J(θ)

∂W (l)

1,U (l−1)

. . . .

(97)
 ∂J(θ)

∂W (l)

U (l),1

 ∂J(θ)

∂W (l)

U (l),U (l−1)

19 Lecture 19: CNNs and Regularizers

19.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of neural network, origi-

nally tailored for problems where the input data has a grid structure. We will focus

to images, however CNNs can also be used for any input data on a grid, be it one

dimensional or n dimensional.

In contrast to a dense layer, a convolutional layer leverages two important concepts,

sparse interactions and parameter sharing. By sparse we mean that most of the pa-

rameters are forced to be zero, more specifically, a hidden unit only depends on the

pixels in a small region of the image, not all pixels, and in border cases, zero padding

is used for the regions located outside the image.

Instead of learning separate sets of parameters for every position, we only learn

one set of a few parameters, and use it for all links between input layer and the hidden

units. We call this set of parameters a filter. the mapping between the input variables

and the hidden units can be interpreted as a convolution between the input variables

and the filter. Mathematically it can be written as

qij = h

F

i=1

Σ

j=1

xi+k−1,j+L−1WkL

!

(98)

where xi,j denotes the zero-padded input to the layer, qi,j is the output of the layer

and Wk,L is the filter with shape F F .
If we add more layers, we would like to reduce the number of hidden units and

only store the most important information, we can use a stride parameter s, which

essentially means that we jump s pixels. Mathematically, it is

qij = h

F

i=1

Σ

j=1

xs(i+k−1),s(j+L−1)WkL

!

(99)

∂W
· · ·

Σ F

Σ Σ

Σ

i

(

Another way of summarising information is through pooling. A pooling layer acts

as an additional layer after the convolutional one,it only depends on a region of

pixels, however in contrast to convolutional layers, the pooling layer doesn’t come

with trainable parameters. Two common versions of pooling are average pooling and

max pooling. In average pooling the average of the units in the corresponding regions

is computed, which in other words means that the output is:

1
qij =

F 2 h

F

i=1

Σ

j=1

xs(i+k−1),s(j+L−1)

!

(100)

When extending to multiple channels, we have that the output from layer l at position

i, j in channel m is

Fl
(L)
ijm

Fl Ul−1
(L−1)
sl(i−1)+k−1,sl(j−1)+L,m

(L)
k,L,m,n

(101)

k=1 L=1 m=1

where qi,j,m is the input to the layer and UL−1 is the number of input channels.

In a full CNN architecture, there are multiple convolutional layers, were usually the

number of rows and columns decrease and the number of channels increase, allowing

for the model to encode high level features. And at the end there is one, or multiple,

dense layers.

19.2 Dropout

Dropout is a bagging-like technique that allows us to combine many neural networks

without the need to train them separately. The trick is to let the different models

share parameters with each other, which reduces the computational cost and memory

requirement.
Mathematically we can write this as sampling a mask, m(L−1) = [m(L−1), . . . , m(L−1)]

where

m(L−1) =
1 with probability r

0 with probability 1 − r

1

∀i = 1, . . . , UL−1

Ul−1

(102)

so the output of layer l becomes

q(L) = h(W(L)q̃(L−1) + b(L)) (103)

with

q̃(L−1) = m(L−1) ⊙ q(L−1) (104)

At evaluation for unseen data points, we simply set the mask to always be equal to

1.

q q W = h

!

≈

2

Σ 1
2

k Σ

1 i
2

i

Note: when the model is over-parametrized a new phenomenon occurs, where after

the test error explodes, it goes down again, in many cases larger overparametrized

models always lead to a better test performance, and the test error peaks around

N d (number of training points almost equal to the number of parameters). This is

possibly because commonly-used optimizers provide an implicit regularization effect.

For example, stochasticity in the optimization process seem to help the optimizer

to find flat global minima, which tend to give more Lipschitz models and better

generalization.

20 Lecture 20 - 21: Unsupervised Learning

One type of (simple) but very frequent application of Unsupervised learning is clus-

tering. The idea is to partition the data points into clusters, where each point belongs

exactly in one class

20.1 K-Means

The simplest form of this problem is to divide the space into k distinct clusters (with

k chosen by the user).

a way of separating points is by using the euclidian distance, that is

d(x, x′) = x − x′ 2 (105)

And the optimization problem becomes

arg min

R1,...,Rk

k

i=1
|Ri|

x,

Σ

x′∈Ri
 x − x

2

(106)

It can be shown that this is equivalent to select clusters minimizing the overall dis-

tances to cluster centers

arg min

R ,...,R

Σ Σ
x − µi 2

where µi =
 1

x (107)
|R |

To find an approximate solution, we set cluster centers to some initial values; for each

input we find the cluster with the closest center; update centers as the average of all

points belonging to that cluster.

The objective is highly non-convex, with many local minima; k-means will converge

to a stationary point, which may not be the best one. The solution is to run it

multiple times and select the best version. It is very sensitive to the normalisation of

i

k
i=1 x∈R x∈R

Σ

Σ

N N

Σ

i
i

| µ , Σ)
π(v)N(x i v

the input values and clusters are forced to be spherical (due to the distance chosen)

and each point can belong only to one cluster.

To choose k, there is a heuristic method called the elbow method, where methods are

fitted with some values, from k = 1 to k = Kmax, the loss is plotted as a function of

k, and you select k such that going from k to k + 1 yields insignificant changes.

20.2 Gaussian Mixture Model

The idea behind the GMM is that for any class (or in this case cluster), x follows a

gaussian. In other words,

f (x, y) = f (x | y)π(y) (108)

where π(y) is the marginal distribution of y. Within unsupervised learning, you want

to know f (x), which is
M

π(y)N(x | µy, Σy) (109)

y=1

with π(y) ≥ 0 ∀y = 1, . . . , M and π(y) = 1. In our case ys are latent variables

y

(they exist but never observed). We can thus compute the conditional distribution

of each yi given x

w (j) = p(y = j | x) = Σ
π(j)N(xi | µjΣj)

 (110)

These conditionals allow for soft clustering, which means that we assign a probability

of xi to belong to any cluster.

The log likelihood is

Σ

i=1

log(f (xi)) =

Σ

i=1

log

M

j=1

π(j)N(xi | µj, Σj)

!

(111)

For M > 1 there is no closed solution, so for this reason we use the Expectation-

Maximization (EM) algorithm.

1. Initialization: Start with initial estimates for the parameters, denoted as θ(0).

2. E-Step: Compute the expected value of the log-likelihood function with respect

to the conditional distribution of the latent variables given the observed data

and current parameter estimates:

Q(θ(t)) = E[log f (X, y | θ(t)) | X, θ(t)]

v

i M
v=1

Σ

Σ

Σ

=

N

=

i=1

Σ

Σ

i=1 j=1

3. M-Step: Update the parameters by maximizing the expected log-likelihood

function obtained in the E-step:

θ(t+1) = arg max Q(θ(t))
θ

4. Check for Convergence: Repeat the E-step and M-step until the changes in

parameters θ are below a certain threshold.

Where

• θ(t) is the set of parameters to be estimated, usually probability of each class,

the mean vector for that class and the variance-covariance matrix of that class.

• E[log f (X, y | θ(t)) | X, θ(t)] = log (f (X, y | θ)p(y | X, θ)) where the first

y

N

term can be rewritten as log f (X, y | θ) = log N(xi | µyi Σyi) +log πyi which
i=1

means that Q(θ) can be rewritten as
 N M

Q(θ) =
Σ Σ

wi(j)

log N(xi | µyj , Σyj) + log πyj

(112)

If wi were fixed, there would exist a global maxima where

1
π(j) =

N

N

wi(j)
i=1

µj N

1
w (j)

Σ
wi(j)xi

i=1 i
N

i=1

Σj N

1
w (j)

Σ
wi(j)(xi — µj)(xi — µj)

i=1 i i=1

The GMM, as for k-means has a non-convex problem, and it can only guarantee a

point of stationarity, which means that poor initialization means poor local optimum.

For this reason you run GMM multiple times with random initialization.

20.3 Principal Component Analysis

The idea behind PCA is to shrink the number of dimensions from d to k with k < d.

If we have an orthonormal basis {ui}k then we can approximate a d-dimensional

T

x î = x̂ +
Σ

a uj (113)

Σ
(a) (114)

d

—

N i=1

j j

Σ

j=k+1

vector as
k

i
j

where x̄ = 1

ΣN

j=1

xi. To understand how good or bad it is we can take the mse,

that is (xi − x̂ i) 2 which by orthonormality of the basis becomes

d
i 2
j

j=k+1

The cumulative loss will then be
N d Σ Σ

(x − x¯)T u
 2

(115)
i i j

i=1 j=k+1

Which can be rewritten as

T
j

j=k+1

1

N
i=1

(xi − x̄i)(xi − x̄ i)T

!

uj (116)

The middle part is the sample covariance matrix, Σ. The optimization problem thus

becomes

min
Σ

uT Σuj subject to uT uj = 1 (117)

Using Lagrange multipliers, differentiating with respect to uj and setting the gradient

to 0 we get

Σuj = λjuj (118)

For this reason, the eigenvectors of Σ are the solution. To minimize the loss, we have

to find (and discard) d k eigenvectors with the smalles eigenvalues.

An alternative view of PCA is that it’s a variance-preserving method, where the

variance is maximized by keeping the highest eigenvectors, so we recursively take k
times the highest eigenvector.

To decide how many eigenvector we need, we use the elbow criterion, just like with

k-means.

SVD is like PCA but we don’t have to compute Σ. Assuming you have data centered

at 0, SVD computes the following factorization

X = U ΓV T (119)

where U has orthonormal columns, Γ is diagonal with non-negative entries and V is

orthonormal. The columns of V are the eigenvectors we’re looking for and the square

root in Γ give us the eigenvalues of Σ

d

u

N

N
Σ

Σ

t

Σ

∈ ∈ Y

Σ
−

Σ

G

!

20.4 Autoencoders

The idea is to use a feed-forward neural network where the data is projected in a

much smaller dimensional space and then projected back in the original space.

If the autoencoder is linear (only one hidden layer), then setting W1 = UT (from PCA,

is the collection of the d-dimensional span that forms Rd) and W2 = U is the best

setting. Deep, non linear autoencoders learn to project the data, not onto a subspace

but onto a nonlinear manifold. This manifold is the image of the decoder, and this

is a kind of nonlinear dimensionality reduction, which can learn more powerful codes

for a given dimensionality when compared with linear autoencoders (PCA).

22 Lecture 22: Introduction to Bandits and Rein-

forcement Learning

22.1 Online Gradient Descent

Online learning is the process of answering a sequence of questions given (possibly

partial) knowledge of the correct answers to previous questions and additional avail-

able info.

If in supervised (offline) learning, we have that predictions are based on a large dataset

and we want to predict a new point, in online learning, data is collected sequentially,

we have to predict labels one-by-one, and only after is the true label revealed. Here

predictions can influence the data collection process, so we want to collect it in a

smart way, to optimize some criterion (for example in Reinforcement Learning - RL

- to maximize some cumulated reward).

Can we extend models to online learning? For the most part, yes. For example we

can rewrite the OLS model to

β̂ =
n

i=1

—

xtxT 1
n

t=1

ytxt

!

(120)

This easy trick can’t be done with logistic regression however, as there doesn’t exist

a closed form solution. What we can do however is to minimize the cumulated loss.

At each step we observe xt χ, we predict label yˆt and observe true label yt
incurring loss ℓ(yt, ŷ t) . The idea is that we want to minimize regret, whic is defined

as
T T

RT = ℓ(yt, ŷ t) min ℓ(yt, g(xt) (121)
g∈G

t=1 t=1

where is the best predictor up to time T , i.e. the whole dataset treated as an offline

problem.

A →
∈ A

The first algorithm designed for Online Convex Optimization is Online Gradient

Descent (OGD). Given a convex loss function L(θ; x, y) where θ are the parameters,

and (x, y) is a data point:

1. Initialize parameters θ0.

2. For each iteration t = 1, 2, . . . , T :

• Receive a data point (xt, yt).

• Compute the gradient ∇L(θt−1; xt, yt).

• Update the parameters:

θt = θt−1 − ηt∇L(θt−1; xt, yt)

where ηt is the learning rate at time t.

3. Output θT .

For bounded gradients (∇L(θ; xt, yt) ≤ L) and parameters within a bounded do-

main (θ − θ′ ≤ R), the regret at time T is bounded by:

RT ≤ RL
√

T

This bound indicates that the average regret per round diminishes as O(1/
√

T),
showcasing the efficiency of OGD in converging towards the performance of the best

possible fixed decision.

22.2 Stochastic Multi-Armed Bandits

In Stochastic Multi-Armed Bandits (MAB), the learner chooses an action at , the

environment chooses a loss function ℓt : [0, 1], the learner suffers a loss ℓt(at)
and then observes some feedback. The environment can be stochastic or adversarial,

and the action set can be continuous or finite and the feedback may be partial.

We will explore a multi-armed bandit problem, where we have k slot machine, with

some probability of a reward (which is the only thing we observe if we interact with

it). A bandit algorithm is a sequential sampling strategy

at+1 = Ft(a1, r1, . . . , at, rt) (122)

Since there are k arms, there are k probability distributions, with mean µa for each

arm. At each round t the learner chooses an arm at and receives a reward Xa,t ∼ Fat .

"
Σ

"
Σ

Σ

Σ

Σ

t

∞

t
Na(t)

a,j j

F

F

j=1

The goal is to maximize E

T

t=1

rt

. The expectation is taken with respect to the

probability measure on outcomes induced by the stochasticity of the algorithm and

the distributions Fa of each arm.
The optimal arm, a∗ ∈ arg max µa with the best mean, µ∗ = max µa. For any arm a,

a a

we define the sub-optimality gap as

∆a = µ∗ − µa (123)

The idea is to play a∗ as much as possible, minimizing the pseudo-regret defined as

Which is basically

T = Tµ∗ − E

T

t=1

rt

(124)

where Na(t) is defined as

T = ∆aE[Na(T)] (125)

a∈[K]

t

Na(t) = 1[ai = a] (126)

i=1

If we just do uniform exploration, we draw each arm T/K times,

T = T
1

F K

∆a
a∈A

!

(127)

Otherwise we can use a greedy strategy, where we estimate the mean of arm a as

µ̂ (a) =
 1 Σ

r 1[a = a] (128)

The next action is the bet according to current estimates

at+1 = arg max µ̂ t(a) (129)
a

with it being estimated as if Na(t) = 0. The problem is that with a greedy setup

we may follow a suboptimal strategy and incur regret at each round, so you suffer

regret Ω(T).
A better idea is Explore-Then-Commit (ETC), where you explore uniformly for

KT0 < T rounds and then commit to the arm with the best empirical mean. If

R

R

R

s

3

D

1

T
 2

T 1 2

we choose T0 =
K (log T)3 guarantees RF = O(K 3 T 3). At the same time, fix

a time horizon T and a number of a r m√s K, for any bandit algorithm there exists a

problem instance D such that RT ≥ Ω(KT).
To achieve the optimal regret bounds we need to explore and exploit at the same

time. A simple idea is the ε-greedy rule, where at round t with probability ε you

sample at ∼ U ({1, . . . , K}) and with probability 1 − ε at = arg maxa∈K µ̂ a (t).
Here RT ≥ K−1 ∆minT with ∆min = mina:µ ̸=µ∗ ∆a. We could obtain regret up-

per bound O

K

K log(T)

d2
by setting εt

a

= min

K
d2t

for 0 < d ≤ ∆

min , but this

requires knowledge of ∆min. We can be greedy but use optimism to incentivize explo-

ration, this is the idea of UCB1, where we build a confidence interval on the mean,

µa : [LCBa(t), UCBa(t)] and we play the arm with the highest UCB. The UCB is

defined as

UCBt(a) =

With UCBt(a) = ∞ if Nt(a) = 0

µ̂ t(a)

explo

`
ita

˛
t

¸
ion

x
term

+
2 log T

Nt(a)

ex

`
plora

˛
ti

¸
on te

x
rm

(130)

1,

