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Introduction 

In a traditional programming setting, the computer is fed an input and a function 

and returns an output; within Machine Learning, the computer is given the data and 

the output and is asked to return the function that best maps the inputs to outputs. 

Machine Learning can extract information from data, but NOT create it. 

There are two types of "learning" from data: 

 

Supervised Learning 

The algorithm is given labelled input (for example, ECG reading and "heart attack"), 

where the labelling is done by experts and the algorithm tries to mimic the labelling. 

More formally: 

Given training dataset  = (x, t) where x are the input, t is the target and an 

unknown function f the goal is to find an approximation of f that generalizes well 

on test data. 

To do so, a loss function L must be defined, an hypothesis space  must be defined 

and an optimization must be done to find an approximate model h 

 

Unsupervised Learning 

In unsupervised learning the core idea is to learn a more efficient representation of a 

set of unknown inputs. 

http://usemotion.com/meet/andrea-celli/ML30412
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1 Lecture 1: Loss Function and Model Performance 

1.1 Modeling Relationship Between Features and Target 

Consider a feature matrix X = [X1, . . . , Xn] and a target variable y. The relationship 

between them can be expressed as: 

y = f (X) + ε (1) 

where ε represents a random error term that is independent of X and has a mean of 

zero. 

If we assume a linear relationship, the model function f is defined as: 

n 

f (X) = β0 + βiXi (2) 

i=1 

Given the infinite possibilities for β values, the optimal set is chosen by defining a 

loss function and evaluating the performance of each candidate model. 

 

1.2 Loss Functions 

A commonly used loss function in regression problems is the Mean Squared Error 

(MSE), defined as: 
n 

MSE = 
n 

i=1 

2 

yi − fˆ(Xi) (3) 

where fˆ represents the model’s estimation of the function f . The optimal model 

minimizes the MSE on a set T of test observations: 

min y − f (x)
 2 

(4) 
 1  Σ 

 ̂
model∈H |T | 

(x,y) 
 

In classification problems, Categorical Log Loss is widely used, where: 
 

C 

L = − yi log(pi) (5) 

i=1 

Here, L denotes the loss for a single example, C is the number of classes, yi is a binary 

indicator of whether class label i is the correct classification, and pi is the predicted 

probability of the observation belonging to class i. 
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1.3 Model Performance Issues 

Underfitting occurs when a model is too simplistic, capturing insufficient patterns 

from the data: 

• Poor performance on training data. 

• The model is overly simplified. 

• Low variance in predictions. 

This is typically due to a lack of sufficient parameters to account for the complexity 

of the data, leading to high bias and low variance. 

Conversely, overfitting happens when a model is excessively complex, capturing 

noise as patterns: 

• High performance on training data but poor generalization to new data. 

• The model captures noise as if it were signal. 

• High variance in predictions. 

This typically occurs in models with too many parameters, resulting in low bias but 

high variance. 

 

2 Lecture 2: Optimization 

2.1 Unconstrained Optimization 

Optimizing a machine learning model typically involves identifying an optimal set of 

parameters. This process is guided by an objective function, assumed to be differen- 

tiable and designed for minimization. The primary goal is to solve: 

min f (x) (6) 
x 

where f : Rd → R represents the objective function. 

 

2.1.1 Gradient Descent 

To minimize said function, we use gradient descent, a first-order optimization algo- 

rithm. It seeks a local minimum by updating parameters in the direction opposite 

to the gradient of the objective function. Given a suitable small step-size η 0, the 

update rule is: 

xt = xt−1 − η (∇f (xt−1))T (7) 
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This method converges to a local minimum, although it may slow near the minimum 

due to its suboptimal asymptotic convergence rate. 

The choice of step-size η is critical in gradient descent: 

• A large step-size can cause the algorithm to overshoot the minimum. 

• A small step-size can render the convergence time impractically long. 

Adaptive methods get away with this by adjusting the step-size dynamically by: 

• Increasing the step-size when the function value decreases after a step. 

• Decreasing the step-size and revert the last update when the function value 

increases, ensuring monotonic convergence. 

When utilizing gradient descent, thus solving systems such as Ax = b, convergence 

can be slow if the matrix A is poorly conditioned. The convergence rate is influenced 

by: 
max σ(A) 

κ = 
min σ(A) 

(8) 

where κ is the condition number. For ill-conditioned systems, applying a precondi- 

tioner P that simplifies P −1(Ax  b) = 0 can enhance performance. 

Another variant of gradient descent is gradient descent with momentum. This 

method incorporates a momentum term to stabilize updates: 

xt = xt−1 − η (∇f (xt−1))T + α∆xt−1 (9) 

where ∆xt−1 = xt−1 xt−2 and α is the momentum coefficient, which lies between 0 

and 1. 

 

2.1.2 Stochastic Gradient Descent (SGD) 

For large datasets, computing the exact gradient becomes computationally prohibitive. 

SGD approximates the gradient using a random subset of data, thus efficiently esti- 

mating the gradient by: 
N 

L(θ) = Ln(θi) (10) 

i=1 

This approach leverages the fact that a mini-batch gradient is an unbiased estimate 

of the full dataset gradient, making it a practical choice for large-scale optimization. 
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2.2 Constrained Optimization 

In contrast to the unconstrained optimization problems discussed earlier, constrained 

optimization introduces limits or conditions that the solution must satisfy. The gen- 

eral form of such a problem is: 

min f (x) 
x 

subject to gi(x) ≤ 0 ∀i = 1, . . . , m 

We will focus on the convex case, although f and gi may be non-convex in other 

contexts. 

To handle the constraints, we use Lagrange multipliers, introducing a multiplier 

λi ≥ 0 for each constraint. This leads to the Lagrangian function: 

m 

L(x, λ) = f (x) + λigi(x) = f (x) + λT g(x) (11) 

i=1 

where g(x) is a vector of all constraint functions gi(x). 
Associated with the original problem is its dual problem, which is formulated as: 

max (λ) 
λ∈Rm 

subject to λ ≥ 0 

The dual function D(λ) is defined as: 

(λ) = min (x, λ) (12) 
x∈Rd 

which turns each specific λ into an unconstrained optimization problem. 

The minimax inequality relevant to duality states: 

max min ϕ(x, y) ≤ min max ϕ(x, y) (13) 

 

This inequality allows us to understand the dual problem as: 

max min (x, λ) (14) 
λ≥0 x∈Rd 

It’s important to note that although the functions f ( ) and gi( ) might be non- 

convex, the dual function (λ) is concave. This is due to the linear (affine) nature 

of (x, λ) in terms of λ, ensuring that the maximization over λ involves a concave 

function. 

An equality constraint, such as hj(x) = k, can be represented using two inequality 

constraints: 
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L(β̂) = 
 
X β̂  − y

  
= ||ε||2 

(18) 
1 2 1 

• hj1(x) ≥ k 

• hj2(x) ≤ k 

This dual formulation allows the use of Lagrange multipliers for equalities similarly 

to inequalities. 

 

3 Lecture 3: Ordinary Least Squares 

Regression is one of the two fundamental tasks of supervised learning. We will now 

introduce the linear regression model, which is (historically) the most used model. In 

a more mathematical framework, regression is about learning a model f such that 

min y = f (X) + ε (15) 
|ε| 

Where y is the vector of outputs of dimension n, and X is our feature matrix of 

dimension n d and ε is a random vector (noise) with mean 0 and is independent of 

X. 

The linear regression model assumes that y can be described as a combination of 

the d input columns X1, . . . , xd, in other words, 

y = Xβ + ε (16) 

where β is the vector of parameters of the model. 

The goal in supervised machine learning is making predictions fˆ(X∗), where X∗ 
is data previously unseen and fˆ is the learned values for β. Since we assume that ε 
is random with zero mean and independent, it makes sense to replace it with 0 in the 

prediction, that is, in a prediction ŷ is equivalent to 

ŷ = fˆ(X∗) = X ∗ β̂  (17) 

To find the minimum amount of errors, we have to define a loss function. For regres- 

sion error usually we use the Mean Squared Error (MSE), which is defined as 
 

n
 

n 

From the perspective of linear algebra, the challenge of linear regression can be 

viewed as finding the vector in the column space of X that is closest to y in the 

Euclidean sense. This task is accomplished through the orthogonal projection of y 
onto the column space of X. The parameters β̂ that achieve this are determined by 

solving the equation: 

XT X β̂  = XT y (19) 
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ε ~ 

ε 

n n 

This equation is known as the normal equation. Here, XT X β̂  represents the projec- 

tion of y onto the column space of X, ensuring that the difference between y and the 

linear combination of columns of X (i.e., the residuals) is orthogonal to the column 

space of X, which results in the least squared error between y and the predicted 

values. If XT X is invertible, then β̂ has the closed form expression 

β̂  = (XT X)−1XT y (20) 

The fact that this closed-form solution exists is the reason for why the linear regression 

is so common, as other loss functions lead to optimization problems that lack this 

type of closed-form solution. 

 

4 Lecture 4: Maximum Likelihood, Categorical Data 

4.1 Maximum Likelihood 

To get another perspective on the least squared error, we will now redefine our initial 

problem as 

max p(y X; β) (21) 
β 

Here p(y X; β) is the probability density of all observed outputs y in the training 

data given X and parameters β, however we need to make another assumption about 

the distribution of y. A common assumption is ε N (0, σ2I), which is equivalent to 

say that the errors follow a normal distribution with mean zero. This in turns means 

that 

p(y | X; β) = N (y; Xβ, σ2I) (22) 

Where N (y; Xβ, σ2I) is the probability of y under the model N (Xβ, σ2I).  If we 
ε ε 

drop within the normal distribution the part that doesn’t depend on β we have that 

our original problem becomes 

β̂ = arg max 
1 

·
 

− ||Xβ − y||2 = arg min 
1 

· ||Xβ − y||2 
(23) 

 

Which is exactly the same as the least square error function. 

 

4.2 Categorical Data 

Categorical inputs are variables that represent categories or groups, such as gender 

or color, and must be encoded numerically to be used in regression analysis.  If 

a categorical column i in the feature matrix X has only two categories, it can be 

β β 
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n 

encoded using binary or dummy variables. This encoding assigns one category a 

value of 0 and the other a value of 1. For example, if the column represents gender, 

males might be coded as 0 and females as 1. 

However, if the categorical variable can take on more than two values, the encoding 

becomes slightly more complex. This scenario requires one-hot encoding. In one-hot 

encoding, each category of the variable is transformed into a new binary column, 

ensuring that for each instance, only one of these columns contains a 1 (indicating 

the presence of that category), while all others contain 0. Specifically, if the i-th 

column of X can take k different categories, the column is expanded into an n k 
matrix. Each row l in this matrix contains a 1 in the column corresponding to the 

category of the original input and 0s elsewhere. 

For instance, if a color variable includes three categories—red, green, and blue—three 

new columns are created: one for each color. An observation with the color green 

would be represented as (0, 1, 0), indicating that the middle column (green) is the 

observed category. 

 

5 Lecture 5: Polynomial Regression, Bias, Variance 

5.1 Polynomial Regression 

Linear regression might appear to be rigid due to its reliance on a straight line model. 

To increase flexibility, we can employ polynomial regression by transforming the input 

variables into higher-degree terms. Mathematically, polynomial regression can be 

expressed as: 

y = β0 + β1x + β2x2 + · · · + ε (24) 

Here, the inclusion of x2, x3, . . . allows the model to fit a wider range of data shapes, 

thus increasing model complexity. However, adding more terms also raises the risk of 

overfitting, as the model’s complexity increases. 

One effective method to control overfitting in polynomial regression is through 

regularization. By introducing a penalty term, λ β 2 (known as L2 regularization), 

we alter the optimization problem to: 

β̂ = arg min

  
1 

· ||Xβ − y||2 + λ ||β||2

 

(25) 

 

Selecting an appropriate value for λ is crucial; too small a value has minimal impact, 

whereas too large a value drives all coefficients towards zero, overly simplifying the 

model. 

β 
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5.2 Understanding Bias and Variance 

When training models, it is essential to consider both bias and variance, which are 

defined as: 

Bias: y¯ − y (26) 

Variance: Var(y¯ − y) (27) 

Here, y¯ is the prediction of our model and y is the actual output. Bias measures 

the error introduced by approximating a real-world problem with a simplified model, 

while variance measures how much the model’s predictions vary between different 

training sets. 

 

5.3 The Generalization Gap and Model Complexity 

Model complexity can lead to discrepancies between performance on training data 

and unseen testing data, often referred to as the generalization gap. In supervised 

learning, particularly in regression, this gap can be quantified through the Mean 

Squared Error (MSE) on new data: 

MSE Test = E∗

 

ETD

  
fˆ(X∗) − f (X∗) − ε

 2
 

(28) 

 

Where E∗ represents the average error across all possible testing data sets X∗. This 

can further be broken down into: 

MSE Test = E∗

  
fˆ(X∗) − f (X∗)

 2
 

+ E∗

 

E 
  

fˆ(X∗) − f¯(X∗)
 2

  

+ σ2 
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High model complexity typically results in low bias but high variance, indicating a 

model that fits the training data well but may not generalize effectively. Conversely, 

a model with low complexity might not capture the underlying patterns adequately, 

leading to high bias. Balancing these factors is key to minimizing the generalization 

gap and improving the robustness of model predictions. 

 

6 Lecture 6: Regularization and Cross-Validation 

6.1 L2 Regularization 

L2 regularization, also known as Ridge, plays a crucial role in controlling the complex- 

ity of the model to prevent overfitting. Ridge regularization shrinks the coefficients 
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n 2 

n 1 

towards zero but typically does not set them exactly to zero, regardless of the value 

of λ, unless it is infinitely large. This characteristic ensures that all features are in- 

cluded but with reduced influence, making Ridge less effective for variable selection 

compared to Lasso. 

The optimization problem for Ridge regularization within a linear regression frame- 
work is given by: 

β̂ = arg min

  
1 

· ||Xβ − y||2 + λ ||β||2

 

(29) 

where ||β||2 
denotes the L2 norm of β, which is the sum of the squares of the coeffi- 

cients. 

Ridge regularization affects all coefficients by applying a penalty proportional 

to the square of the magnitude of coefficients. This squared term ensures that the 

penalty increases significantly as the coefficients grow, making it very effective at 

controlling large values of coefficients, thus leading to more stable and generalizable 

models. The L2 norm, visualized as spherical contours in parameter space, ensures 

that the solution to the optimization problem lies within these spherical bounds, 

gently pulling all coefficients towards zero as λ increases, but never exactly setting 

any to zero. 

This form of regularization is especially beneficial in situations where model pre- 

diction is more critical than interpretation, as it includes all variables but regulates 

their impact through shrinkage. 

 

6.2 L1 Regularization 

As we previously explored, incorporating L2 regularization, also known as Ridge, 

reduces the risk of overfitting. However, Ridge has a notable limitation: it never sets 

any coefficient to zero unless λ = . This behavior might not significantly affect 

prediction accuracy but can complicate model interpretation, particularly when the 

dimensionality d (the number of predictor variables in X) is substantial. On the 

other hand, L1 regularization, commonly referred to as Lasso, addresses this issue 

effectively. Within a linear regression framework, the optimization problem for Lasso 

is formulated as: 

β̂ = arg min

  
1 

· ||Xβ − y||
2 

+ λ ||β||

 

(30) 

where β 1 denotes the L1 norm of β, which is the sum of the absolute values of the 

coefficients. 

Like L2, the L1 penalty shrinks the coefficients towards zero. However, a dis- 

tinctive feature of L1 regularization is its ability to set some coefficients exactly to 

zero when λ is sufficiently large. This phenomenon occurs because the L1 norm is 

β 

β 
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not differentiable at zero, which introduces points of non-differentiability in the ob- 

jective function. As a result, during the optimization process, some coefficients can 

converge precisely to zero. Consequently, Lasso not only helps in reducing overfitting 

by regularization but also performs variable selection. This attribute allows Lasso to 

produce sparse models — models that involve only a subset of the available variables, 

enhancing model simplicity and interpretability. 

The reason why L1 regularization can result in some coefficients being exactly 

zero lies in its geometric interpretation and the properties of the L1 norm. The L1 

norm penalty, λ β 1, encourages sparsity because it imposes a constant penalty for 

any non-zero coefficient. This form of regularization can be visualized as bounding 

the coefficients within a diamond-shaped (in two dimensions) or a rhomboid-shaped 

(in higher dimensions) contour, centered at the origin. 

As the value of λ increases, the size of these contours decreases, pulling the coeffi- 

cient estimates towards the origin. In higher dimensions, the corners of these contours 

lie along the axes, and it is more probable for the optimization solution to hit these 

corners where some of the coefficients are exactly zero. In contrast, the L2 norm 

creates circular (or spherical in higher dimensions) contours, which do not promote 

sparsity as their boundaries never touch the axes unless the radius is zero. 

Thus, by employing L1 regularization, we can achieve a model that is not only 

less prone to overfitting but also more interpretable due to its simplicity in involving 

fewer variables. 

 

6.3 Bayesian Interpretation of L1 and L2 Regularization 

Regularization techniques can also be interpreted through a Bayesian lens, where they 

correspond to introducing specific prior distributions on the regression coefficients. 

This perspective connects regularization with Bayesian inference, where regularization 

parameters are viewed in terms of prior beliefs about the values of the coefficients. 

 

6.3.1 Bayesian Interpretation of L2 Regularization (Ridge) 

L2 regularization, or Ridge regression, can be understood as placing a Gaussian prior 

on the coefficients β. Specifically, this is equivalent to assuming that each coefficient 

βi is drawn from a normal distribution centered at zero with a variance inversely 

proportional to the regularization parameter λ: 

βi ∼ N(0, σ2) (31) 

where σ2 = 1 . Under this framework, the Ridge penalty λ ||β||2 
corresponds to the log 

of the Gaussian prior probability. The effect of this prior is to shrink the coefficients 



    

towards zero, with stronger shrinkage as λ increases, reflecting a stronger belief that 

the coefficients are small. 

 

6.3.2 Bayesian Interpretation of L1 Regularization (Lasso) 

L1 regularization, or Lasso, implies a Laplace prior distribution on the coefficients 

β. This corresponds to assuming that each coefficient βi is drawn from a Laplace 

distribution centered at zero, which is characterized by a probability density function: 

λ 
p(βi) = 

2 
exp (−λ|βi|) (32) 

Here, the regularization parameter λ controls the diversity of the distribution; higher 

values of λ create a sharper peak at zero, encouraging stronger sparsity. This Lapla- 

cian prior leads to a probability distribution with heavier tails and a sharp peak 

at zero, which makes it more likely for the coefficients to be exactly zero, thereby 

promoting sparsity. 

 
6.3.3 Implications of Bayesian Priors 

The choice between Ridge and Lasso in a regression model can thus be viewed as a 

choice between believing that the true coefficients are small but non-zero (Gaussian 

prior) versus believing that many coefficients are exactly zero with some potentially 

large outliers (Laplace prior). 

 

6.4 Cross-Validation 

Cross-validation is a statistical method used to estimate the generalization error of a 

model, especially when a large dataset for testing is not available. The process involves 

holding out a subset of the training data from the fitting process, then applying the 

statistical model to these held-out observations to evaluate performance. 

 

6.4.1 Validation Set Approach 

A straightforward method of cross-validation is the validation set approach, where 

the dataset is randomly divided into a training set and a validation set. The model 

is trained on the training set and evaluated on the validation set. This method 

provides a rough estimation of model performance. However, the performance can 

vary significantly with different splits of the data, indicating the potential instability 

and bias of this method. 
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6.4.2 Leave-One-Out Cross-Validation (LOOCV) 

Leave-One-Out Cross-Validation (LOOCV) is a more intensive approach compared 

to the validation set method. In LOOCV, the model is fitted n times for a dataset 

with n entries, each time leaving out one data point. The omitted data point is used 

as the test set for that iteration. The LOOCV estimate of the model’s performance 

is given by: 

LOOCV = 
1 Σ 

MSE 
 

(33) 

where MSEi is the mean squared error of the prediction for the left-out data point in 

the i-th iteration. Although LOOCV is excellent for reducing bias in model evaluation, 

it is computationally expensive as it requires fitting the model n times. 

 

6.4.3 k-Fold Cross-Validation 

An alternative to LOOCV is k-fold cross-validation, which balances computational 

efficiency with model evaluation bias. In k-fold cross-validation, the dataset is divided 

into k equal parts. The model is then trained k times, each time using k  1 subsets as 

the training data and the remaining subset as the test set. This approach is expressed 

mathematically as: 

k-Fold CV Error = 
1 Σ 

MSE 
 

(34) 

where MSEi is the mean squared error on the left-out subset during the i-th iteration. 

Choosing k < n results in a process that is less computationally demanding than 

LOOCV, but it may introduce more bias into the estimation of the model’s error. 

 

7 Lecture 7: Classification 

If we have a classification problem, we need a way of defining P[Y  X]. Unlike 

regression methods which can (and will!) output negative values, classification models 

can provide meaningful estimates for P[Y X], particularly important in multi-class 

settings. 

 

7.1 Logistic Regression 

Logistic regression is a fundamental classification method. It differs from typical 

regression as it estimates the probability of an observation belonging to a class rather 

i 

i 



    

Y Y 

    

1 − p(Xi) 
1 

than directly assigning a class. The probability that observation Xi belongs to a 

certain class is given by the logistic function: 

eβ0+β1Xi 

p(Xi) = 
1 + eβ0+β1Xi 

(35) 

Through some algebraic manipulation, we can express this as: 

log

 
 p(Xi) 

  

= β 
 
+ β X 

 
(36) 

 

This transformation is known as the logit of p(Xi), which interestingly shows that the 

logit is linear with respect to X. 

Estimation via Maximum Likelihood: To determine the best parameters 

for our logistic model, we employ the maximum likelihood estimation method. The 

likelihood function for a set of parameters β0 and β1, considering a binary classification 

scenario, is formulated as: 
 

L(β0, β1) = 
i:yi=1 

p(Xi) 
j:yj =0 

(1 − p(Xj)) (37) 

Maximizing this function with respect to the parameters yields the estimates βˆ
0 and 

β̂ 1 ,  which are used in predicting new data points. 

 

7.2 Multivariable Logistic Regression 

Multivariable logistic regression extends the simple logistic regression model to ac- 

commodate multiple predictors. This model is particularly useful for scenarios where 

the outcome depends on more than one explanatory variable. 

 

7.2.1 Model Formulation 

In the multivariable logistic regression, we model the probability that an obser- 

vation belongs to a particular class as a function of several input variables. If 

Xi = (1, Xi1, Xi2, . . . , Xip)T is a vector representing the predictors for the i-th ob- 

servation and β = (β0, β1, β2, . . . , βp)T is the vector of coefficients, the probability is 

given by: 

eβT Xi 

p(Xi) = 
1 + eβT Xi 

(38) 

This can be rearranged using the logit transformation: 

log 
 p(Xi)  

= βT X 
1 − p(Xi) 

 
(39) 

0 i 

i 
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This equation shows that the logit (the logarithm of the odds) is a linear combination 

of the predictors. 

 

7.2.2 Parameter Estimation 

The estimation of parameters in a multivariable logistic regression is typically per- 

formed using maximum likelihood estimation (MLE). The likelihood function for the 

logistic model, given binary outcomes across observations, is: 

L(β) = 
i:yi=1 

p(Xi) (1 − p(Xj)) (40) 

j:yj =0 

Maximizing this likelihood function with respect to β provides estimates β̂ ,  which 

best explain the observed relationships between predictors and the outcome variable. 

Note: The optimization of this likelihood function is typically performed nu- 

merically using iterative methods such as Newton-Raphson or gradient descent, as 

analytic solutions are not feasible due to the complexity of the model. 

 

7.3 Multivariate Logistic Regression 

Multivariate logistic regression, also known as multinomial logistic regression when 

each outcome is a category, allows for the modeling of scenarios where there are 

multiple dependent categorical variables. This is particularly useful for understanding 

complex relationships where outcomes influence each other. 

 

7.3.1 Model Formulation 

In multivariate logistic regression, we aim to model multiple responses simultaneously. 

Let Yi be the vector of responses for the i-th observation and Xi be the corresponding 

vector of predictors. If each element of Yi can take on values from a set of categories, 

the model provides probabilities for each category for each response variable. 

The model uses a set of coefficients for each response variable, creating a matrix 

of coefficients β. Each row of β corresponds to a different response variable, and each 

column corresponds to a predictor. The probability of observing a particular category 

for each response variable is modeled similarly to the binary logistic regression but 

extended across multiple equations: 

 
ij i 

 

eβT Xi  (41) 
p(Y = k | X ) = Σ 

eβT Xi 

L 

where βjk is the coefficient vector for the j-th response in category k, and the de- 

nominator ensures that the probabilities sum to one. 
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7.3.2 Parameter Estimation 

The parameters of a multivariate logistic regression model are usually estimated using 

maximum likelihood estimation. The likelihood function considers the joint proba- 

bility distribution of the response vector given the predictors, which is the product 

of the probabilities for each category of each response: 
 

n m Kj 

L(β) = (p(Yij 
i=1 j=1 k=1 

= k | X 1(Yij =k) 
i 

where n is the number of observations, m is the number of response variables, Kj is 

the number of categories in the j-th response, and 1(Yij = k) is an indicator function 

that is 1 if Yij = k and 0 otherwise. 

Note: This model is more computationally intensive due to the larger number 

of parameters and the complexity of the likelihood function. Techniques such as 

Expectation-Maximization (EM) or specialized optimization algorithms may be nec- 

essary to find the best-fit parameters. 

This extension of logistic regression allows for a nuanced analysis of complex 

datasets with interdependent outcomes, providing a deeper insight into the underlying 

processes that generate the data. 

 

8 Lecture 8: GLMs and Non-Parametric Methods 

8.1 Generalized Linear Models 

Generalized Linear Models (GLMs) are a versatile class of models that extend tradi- 

tional linear regression to accommodate response variables, y, that are not necessarily 

continuous, such as counts or categorical data. This is achieved by specifying a suit- 

able probability distribution for the response variable, p(y  Xi; θ), and linking it to 

a linear predictor through a function. 

 

8.1.1 Components of a GLM 

GLMs consist of three primary components: 

• Random Component: Specifies the probability distribution of the response 

variable, y, which typically belongs to the exponential family (e.g., Gaussian, 

Binomial, Poisson). 

• Systematic Component: The linear combination of predictors, Xi, denoted 

as z = β0 + β1X1 + · · · + βnXn. 
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• Link Function: A function, ϕ, that relates the expected value of the response 

variable to the linear predictor, z. The relationship is given by E[y Xi; θ] = 
ϕ−1(z). 

 

8.1.2 Example: Logistic Regression 

A common example of a GLM is logistic regression, where the response variable is 

categorical (e.g., binary). The probability distribution of y is modeled using the 

binomial distribution, and the link function is the logistic function. This function is 

defined as: 

ϕ(µ) = log 
 µ  

(43) 
1 − µ 

where µ is the probability of one of the outcomes (e.g., success). The inverse of this 

link function, ϕ−1(z), which is the logistic function, transforms the linear predictor 

into a probability: 
ez 

µ = (44) 
1 + ez 

8.2 k-Nearest Neighbours 

k Nearest Neighbors (k-NN) is a non-parametric method that can be used for both 

classification and regression. This method assumes that similar inputs have similar 

outputs, making predictions based on the outputs of the nearest training examples. 

 

8.2.1 The Algorithm 

The steps involved in the k-NN algorithm are as follows: 

1. Distance Calculation: Compute the Euclidean distance between the test 

point X∗ and each training point Xi, represented as: 

¨Xi − X∗¨ 

2. Identify Nearest Neighbors: Sort all points by their distance to X∗ and 

select the top k closest points. 

3. Aggregate Neighbors’ Outputs: For regression, predict by averaging the 

outputs yi of these k neighbors. For classification, use the mode of yi. The 

neighborhood of X∗ is defined by: 

N∗  = {i : Xi is one of the k nearest training datapoints to X∗} 

and the prediction is given by: 

fˆ(X∗) = aggregate({yi : i ∈ N∗}) 

2 
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8.2.2 Choice of k 

The hyperparameter k plays a crucial role in the performance of the k-NN algorithm: 

• A smaller k makes the algorithm sensitive to noise in the data. 

• A larger k provides smoother predictions but may include less similar points, 

which can reduce accuracy. 

Optimal k is usually selected via cross-validation. 

 

8.2.3 Data Normalization 

Due to the reliance on distance calculations, it is crucial to normalize the data so that 

each feature contributes equally to the distance. This is particularly important when 

features vary in scale and range. 

 

Min-Max Scaling This technique scales each feature to a [0, 1] range indepen- 

dently, enhancing the uniformity of influence among features. The transformation for 

each feature column j is computed as: 

′ 
= 

  Xij − min(Xj)  

max(Xj) − min(Xj) 

where Xij is the original value, and min(Xj) and max(Xj) are the minimum and 

maximum values of the feature column j, respectively. 

 

8.3 Decision Trees 

Decision trees are rule-based models that explicitly partition the input space using a 

set of decision rules. These models are structured with various nodes and branches: 

the terminal points of each branch are called leaf nodes, and the decision points leading 

to further branches are referred to as internal nodes. The lines connecting the nodes 

are known as branches, and when an internal node divides into two branches, it is 

described as binary. 

 
8.3.1 Regression Tree 

We will start by discussing how to train a decision tree in a regression problem. The 

prediction fˆ(X∗) is a piecewise constant function of X∗ and can be written as: 
j j 

fˆ(X∗) = 
Σ 

fˆℓ1{R }(X∗) (45) 
 

X 
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where L is the total number of regions (leaf nodes), Rℓ is the ℓth region, fˆℓ is the 
constant prediction for said region, and 1{R }(X∗) is the indicator function, which 

ℓ j 

equals 1 if X∗  Rℓ and 0 otherwise. Training the tree involves finding suitable values 

for the parameters defining the function, namely the regions Rℓ and the constant 

predictions. 

 

8.3.2 Classification Tree 

Classification trees, similar to regression trees, use a set of rules to determine the 

class label for a given input X∗. In classification, the prediction fˆ(X∗) is typically 
j j 

the class that occurs most frequently within the leaf node: 

fˆ(X∗) = mode{yi : Xi ∈ Rℓ and 1{R }(X∗) = 1} (46) 

where Rℓ is the region corresponding to the leaf node that contains X∗, and yi are 

the class labels of the training instances in Rℓ. Training a classification tree involves 

creating splits that maximize the purity of each node, using criteria such as Gini 

index or entropy, to ensure that each leaf is as homogeneous as possible in terms of 

class distribution. 

 
8.3.3 Criteria for Splitting in Decision Trees 

In decision trees, the choice of the best split at each node is crucial to reduce the 

complexity and increase the accuracy of the model. Several criteria can be used to 

measure the quality of a split, including the misclassification rate, Gini index, and 

entropy. These measures help determine which feature and threshold should be used 

to divide the node into child nodes. 

 

Misclassification Rate The misclassification rate is the simplest criterion for eval- 

uating splits. It is calculated as the proportion of the most common class in a node 

minus one: 

Misclassification Rate = 1 − max(proportion of class k) (47) 

where the proportion of class k is the number of instances of class k in the node divided 

by the total number of instances in the node. This criterion seeks to minimize the 

error directly but may not be sensitive enough for trees with more than two classes 

or imbalanced class distributions. 
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Gini Index The Gini index measures the impurity of a node. A node is pure (Gini 

= 0) when all its cases belong to a single class. The Gini index for a node is computed 

as: 
K 

Gini Index = 1 − (pk)2 (48) 

k=1 

where pk is the proportion of class k instances within the node, and K is the number 

of classes. The Gini index is a measure of the total variance across the classes in the 

node. It is particularly effective for categorical targets where the variable does not 

have a huge number of categories. 

 

Entropy Entropy, a concept borrowed from information theory, measures the ran- 

domness or uncertainty within a node. The entropy for a dataset is zero when it 

contains instances of only one class. It is calculated using the formula: 

K 

Entropy = − pk log2(pk) (49) 

k=1 

where pk is the proportion of class k instances in the node. A split that results in the 

largest decrease in entropy is considered the best split. Entropy is particularly useful 

for training classification trees because it gives the best possible reduction in entropy 

after each split. 

Each of these splitting criteria aims to optimize different aspects of the tree’s 

structure and classification power. Typically, the choice of splitting criterion can 

have a significant impact on the performance of the decision tree model. 

 

9 Lecture 9 - 10: Support Vector Machines 

Support Vector Machines (SVMs) are a sophisticated development of a simpler clas- 

sifier known as the Maximal Margin Classifier. This simpler form is often impractical 

as it requires that all classes be linearly separable with a linear boundary. 

 

9.1 Maximal Margin Classifier 

A Maximal Margin Classifier identifies a type of hyperplane in a d-dimensional space. 

A hyperplane is a flat, d − 1 dimensional subspace defined by the equation: 

wT x = 0 (50) 

where w and x are a vector in Rd. If x satisfies the equation, it lies on the hyperplane. 

Values greater than or less than 0 indicate the vector’s position relative to either side 

of the hyperplane. 
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9.1.1 Classification using a Hyperplane 

Consider a feature matrix X of dimensions n  d, with labels yi 1, 1 for i = 
1, . . . , n. If it’s possible to perfectly separate the classes with a hyperplane, such a 

hyperplane must satisfy: 

yi(wT Xi) > 0 ∀i = 1, . . . , n (51) 

A natural classifier then assigns a class based on the sign of: 

fˆ(Xi) = wT Xi (52) 

The magnitude of fˆ(Xi) can also indicate the confidence in its classification and if 

 w  = 1 then the margin is called the geometric margin 

 

9.1.2 The Maximal Margin Classifier 

If data are linearly separable, many separating hyperplanes are possible. The optimal 

choice is the maximal margin hyperplane, which maximizes the distance (margin) 

from the nearest training observations. This hyperplane is computed by solving the 

following optimization problem: 

 

max min 
 

 
y (wT X )

 
(53) 

subject to yi(wT Xi) ≥ 1, ∀i = 1, . . . , n. (54) 

where min is the minimal distance between the hyperplane and any observation of 
i 

the feature matrix X. This is called the maximal margin classifier or hard margin 

classifier. This problem is very difficult, as we have a nested max-min, and can be 

reformulated as 
 

max 
w:  w  =1 

M (55) 

such that yiwT Xi ≥ M ∀i = 1, . . . , n. (56) 

or equivalently 
 

min 
w 

1 
w 2 (57) 

2 
such that yiwT Xi ≥ 1 ∀i = 1, . . . , n. (58) 
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9.2 Support Vector Classifiers 

The support vector classifier, also called soft margin classifier, rather than seeking the 

largest possible margin so that every observation is on the correct side of the margin 

(and of the hyperplane) we allow some observation to be on the incorrect side of the 

margin (and even hyperplane). 

The support vector classifier is the hyperplane that separates most of the train- 

ing observations but may misclassify a few observations. It is the solution to the 

optimization problem 

 
min 
w,ξ 

λ 
w 2 + ξ 

2 n i 
(59) 

i=1 

such that yi(wT Xi) ≥ 1 − ξi, ∀i = 1, . . . , n (60) 

and ξ ≥ 0, ∀i = 1, . . . , n. (61) 

Where ξ1, . . . , ξn are slack variables that allow individual observations to be on the 

wrong side and λ is the tradeoff parameter; if λ is very small we want as few points 

in the margin as possible, while on the contrary if λ is very large, we are comfortable 

with more and more observations within the margin. 

Note: misclassification only happens for ξi  1. 

The maximization problem can be rewritten as 
n 

λ 1 Σ   min w 2 + 1 − y wT X (62) 
w  2 n 

i=1  ̀
i i 

hing

˛
e

¸
loss 

x 

where [α]+ = max{α, 0}. This is a form of regularized empirical loss minimization. 

We can derive (61) using the risk minimization framework; given X, y ∼ D we want 

to find the classifier g : X → y with the lowest possible risk, which is 

L(g) = PD(y ̸= g(X)) (63) 

we don’t know D and for this reason we use empirical risk minimization, 
n 

1 Σ 
min L (g) = 1(y g(X ) ≤ 0) (64) 

 

However this problem is not convex; to circumvent this, we take a convex function 

ϕ : R  R which is always greater than (or equal) than the 0-1 loss and minimize 

that function. In this case we take the hinge loss, which penalises more if it’s not 

confident enough or if it’s far from the border. Then once we have the surrogate we 

compute 

min 
1 Σ 

ϕ(y wT X ) (65) 
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9.2.1 How to compute w 

We have now a convex problem that, however, is not smooth (as the hinge loss is 

not differentiable at 1). To circumvent this problem we can either use subgradient 

descent (see the next subsection) or define an auxiliary function g(w, a) such that 

min L(w) = min max g(w, a) (66) 
w w a 

But first we have to define a good g, in this case we take it to be 

g(w, ai) = max 
ai∈[0,1] 

ai(1 − yiwT Xi (67) 

Then the problem becomes 

 

min L(w) = min 

 

 
max 

 

1 Σ 
a (1 − y wT X ) + 

λ 
 w  2 

 

 

 
(68) 

If g is convex in w and concave in a and the domains of w, a are convex and compact 

then 
min max g(w, a) = max min g(w, a) (69) 

w a a w 

where we say that a domain is convex if, for every pair of points within the domain, 

every point on the straight line segment that joins them is also within the domain. A 

domain is compact if it is closed and bounded; that is, it contains all its limit points, 

and its size is limited. As this condition is satisfied in Support Vector Machines we 

can exchange the min and max. 

We can now solve the inner problem by taking its gradient, namely 
n 

∇  G(w, a) = − 
1 Σ 

a y X + λw (70) 
 

setting it to 0 we can express w as a function of a, 
n 

w(a) = 
 1  Σ 

a y x = 
 1  

XT ya (71) 
 

where a is a row vector and y is a column vector. Now the dual problem becomes 

 max a 1 − y X X ya

  

+ X  ya (72) 
1 Σ  

1 T T T 2 
a∈[0,1]n n 

which is equal to 

i 

max 

λN i 

 
1T a 

— 

i 
 

 

1 
aT yXXT 

 

 
ya (73) 

n 2λn 2 
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And this problem is differentiable and concave and can be solved either through 

quadratic programming solvers or coordinate ascent methods. The loss function de- 

pends on the data only through the kernel matrix K = XXT  Rn×n which does not 

depend on the dimensionality of the feature matrix, d. 

a is tipically sparse and = 0 only for the training observation necessary for deter- 

mining the decision boundary. There are three cases: 

• ai = 0, which means that the Xi is a non-support vector 

• ai [0, 1] which means that Xi is an essential support vector (right side but on 

the margin) 

• ai = 1 which means that Xi is a bound support vector (wrong side or strictly 

inside the margin) 

 

Explanation of Subgradient Descent 

Subgradient descent is a variant of the gradient descent method used for minimizing 

non-differentiable functions. It is particularly useful in optimization problems where 

the objective function does not have a derivative at some points, as is the case with 

the hinge loss function at 1. 

In gradient descent, we update the variable x using the formula: 

xnew = xold − α∇f (xold) 

where α is the learning rate and f (xold) is the gradient of the function f at xold. 

For non-differentiable functions, the gradient f at certain points does not exist. 

Instead, we use a subgradient, which is any vector g that satisfies: 

f (y) ≥ f (x) + gT (y − x), for all y 

The subgradient is not unique, and any vector that satisfies the above condition can 

be used as a subgradient. 

The update rule in subgradient descent then becomes: 

xnew = xold − αg 
 

where g is a subgradient of f at xold. The choice of the subgradient and the learning 

rate α significantly impacts the convergence properties and the solution’s quality. 

Subgradient methods are typically slower in convergence compared to gradient 

descent for smooth problems, and careful tuning of the learning rate is necessary to 

achieve good performance. 
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11 Lecture 11: Kernel Methods 

11.1 Kernel Ridge Regression 

Sometimes, as we have seen in lecture 5, it makes sense to transform the input data 

with some function ϕ, for example we can take a feature matrix X where Xi = [xi1, xi2] 
and transform it into Φi = [xi1, xi2, xi1xi2]. 

A carefully engineered Φ may perform extremely well for a specific machine learn- 

ing problem, however we would like Φ to contain a lot of transformations that could 

possibly be of interest for most problems, letting d , where d is the dimensionality 

of Φ. 

First of all, however we have to use some kind of regularisation if we are going 

to increase d in order to avoid overfitting. Recall that the equation for L2 linear 

regression is 

β̂  = arg min 
1 Σ

(βT Φ − y )2 + λ  β  
2 = (ΦT Φ + nλI)1 ΦT y (74) 

 

The problem is that for d very large, if we want to compute a prediction, we have to 

learn d parameters and store the d-dimensional vector β̂ .  The first step is to realise 
that the predictions can be rewritten as 

fˆ(X∗) = yT Φ
  

ΦT Φ + nλI
 −1 

ϕ(X∗) (75) 
i `˛¸x ̀ ˛¸x ̀  ˛¸ x ̀ ˛¸i x 

1×n n×d 

` 
d×d 

n
˛

×
¸

1 

d×1 

x 

This expression suggests that for each test input we could compute the n-dimensional 

vector Φ(ΦT Φ + nλI)−1ϕ(X∗); by doing so, we avoid storing a d-dimensional vector 

but we would still have to invert a d d. As the push-through matrix identity states 

that A(AT A + I)−1 = (AAT + I)−1A for any matrix A we could rewrite our equation 

to be 
fˆ(X∗) = yT (ΦΦT + nλI)−1 Φϕ(X∗) (76) 

`
1
˛

×
¸

n
x ̀  

n
˛

×
¸
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x ̀  
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It appears that we can compute fˆ(X∗) without having to deal with any d-dimensional 

vector or matrix, provided that the multiplications can be computed. Examining ΦΦT 
we can see that 

ϕ(x1)T ϕ(x1) ϕ(x1)T ϕ(x2) · · · ϕ(x1)T ϕ(xn)
 

ΦΦT = . 
 

. . . . .  
(77) 

 

 
ϕ(xn)T ϕ(x1)  ϕ(xn)T ϕ(x2)  · · · ϕ(xn)T ϕ(xn) 

i 

β 
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each entry is an inner product, which is a scalar. If we are able to compute that inner 

product directly, without explicitly computing each ϕ(x), we have reached our goal. 

 

11.2 The Kernel Trick 

The kernel trick is a powerful technique in machine learning that facilitates the han- 

dling of high-dimensional feature spaces without the need to explicitly compute the 

coordinates of the data points in that space. This is achieved by defining a kernel 

function k(x, x′) that computes the inner products between the images of the data in 

the feature space: 

k(x, x′) = ϕ(x)T ϕ(x′) (78) 

where ϕ is a mapping from the input space to the feature space. 

Mercer’s Theorem plays a crucial role in the kernel trick. It states that a kernel 

function k(x, x′) corresponds to an inner product in some feature space if and only 

if the corresponding kernel matrix K is symmetric and positive semi-definite. This 

matrix K, with elements Kij = k(xi, xj), is known as the Gram matrix. 

The Representer Theorem provides a theoretical justification for the kernel 

trick. It asserts that any function that minimizes a regularized risk functional over a 

reproducing kernel Hilbert space can be expressed as a linear combination of kernel 

functions evaluated at the training data points: 

n 

fˆ(x) = αik(xi, x) (79) 

i=1 

where αi are coefficients determined through the learning process. This theorem 

demonstrates that the complexity of the model is inherently controlled by the number 

of training samples, rather than the dimensionality of the feature space, facilitating 

computation in very high-dimensional spaces. 

In the context of Kernel Ridge Regression, the kernel trick allows us to refor- 

mulate the regression function as follows: 

fˆ(X∗) = yT (K + nλI)−1k(X∗) (80) 

where k(X∗) is a vector consisting of k(xi, X∗) for each training point xi. This model 

avoids the explicit computation of the feature vectors ϕ(xi), using instead the kernel 

matrix K to achieve efficient computation. The kernel approach provides a practical 

way to handle situations where the dimensionality of the feature space is extremely 

large or even infinite. 

By exploiting properties of kernel functions and the structure of data, the kernel 

trick significantly simplifies computations in machine learning algorithms and enables 

the application of linear methods to solve nonlinear problems. 
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12 Lecture 12: Gaussian Processes 

A Gaussian Process (GP) is a specific type of stochastic process that generalizes the 

concept of multivariate Gaussian distributions to infinite dimensions. A stochastic 

process corresponds to a collection of random variables z(t) : t  R indexed by 

time t. In this context, each time point t corresponds to a random variable z(t), 
and the values at different time points are correlated. This correlation depends on 

the difference between time points, x, and can be generalized to functions of random 

variables,  f (x) : x  X , where X is the input space of dimension d. 

In the Gaussian process model, we begin by considering the case where the input 

variable x is discrete and can only take q different values. In this setting, the function 

f can be characterized by a q-dimensional vector f = [f (x1), . . . , f (xq)]T . This vector 

f is modeled as a random function by assigning it a joint probability distribution 

which is multivariate Gaussian: 

p(f ) = N(f ; µ, Σ) (81) 

However, for a Gaussian process on a continuous input space, we extend this by letting 

the index set be continuous and replacing the vector f with a random function f . The 

Gaussian process is then fully specified by its mean function µ(x) and a covariance 

function κ(x, x′). We will use then the notation 

f ∼ GP(µ, κ) (82) 

For a new, unseen point X∗, the Gaussian process prescribes that the joint distri- 

bution of the observed outputs f (X) and the output at the new point f (X∗) is given 

by:   
f (X∗)

   
f (X∗)

  
µ(X∗)

  
κ(X∗, X∗)  κ(X∗, X)T

  

where X represents the set of all input points corresponding to the outputs in f . The 

covariance between f (X∗) and f (X) is governed by the kernel functions, reflecting 

the underlying assumptions about the function’s smoothness and variability. 

The predictive distribution for f (X∗) given the observed data is a normal distri- 

bution with mean and variance specified by conditioning on the observed data. The 

mean and covariance for the prediction at X∗ are computed using the formulas: 

µpred(X∗) = µ(X∗) + κ(X∗, X)κ(X, X)−1(f (X) − µ(X)) (84) 

σ2 (X∗) = κ(X∗, X∗) − κ(X∗, X)κ(X, X)−1κ(X, X∗). (85) 

p (83) 
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13 Lecture 13-14: Ensemble Methods 

13.1 Bagging 

Bagging, which stands for Bootstrap Aggregating, is an ensemble method designed 

to improve the stability and accuracy of machine learning algorithms. It reduces 

variance and helps to avoid overfitting. Although it is usually applied to decision tree 

methods, it can be used with any type of method. Bagging involves creating multiple 

versions of a predictor and using these to get an aggregated predictor. 

The process of bagging involves: 

1. Creating multiple subsets of the original dataset with replacement, known as 

bootstrap samples. 

2. Training a model on each of these subsets. 

3. Combining the models using the average of predictions from all models for 

regression tasks or a majority vote for classification tasks. 

The mathematical representation of bagging for classification can be expressed as: 

fˆbag(x) = mode{fˆ(1)(x), fˆ(2)(x), . . . , fˆ(B)(x)} (86) 

where fˆ(b)(x) is the prediction of the b-th model trained on the b-th bootstrap sam- 

ple. For regression problems, the aggregate prediction is typically the average of the 

predictions: 

fˆbag(x) = 
 1 

B 

B 

fˆ(b)(x) (87) 

b=1 

where B is the number of bootstrap samples (models). 

The bias (or average) stays the same, but the variance is reduced by 

1 − ρ
σ2 + ρσ2 (88) 

B 

Where ρ is how correlated the base models are and σ2 is their variation 

 

13.2 Random Forest 

The idea behind random forest is similar to bagging, however instead of considering 

all possible p variables as splitting variables, we only consider q   p, with the subset 

p changing at every node split 
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13.3 Adaboost 

AdaBoost (Adaptive Boosting) is an ensemble technique that combines weak learners 

(typically decision stumps) into a strong learner in a sequential manner. Each weak 

learner is trained on the entire dataset but with different sample weights, which are 

adjusted to focus more on previously misclassified instances. 

 

Given: Training data (x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1} 

Initialize: D (i) = 
1 

for i = 1, . . . , n 
1 n 

For t = 1 to T : 

1. Train weak learner ht using weights Dt 
n 

2. Compute error ϵt = Dt(i)I(yi ̸= ht(xi)) 
i=1 

3. Compute weight α = 
1 

log

 
1 − ϵt

 

 
 

 

4. Update weights Dt+1 (i) = 
Dt(i) exp(−αtyiht(xi)) 

Zt 
where Zt is a normalization factor 

 

Output: H(x) = sign 

T 

 
t=1 

αtht(x)

! 

13.4 Gradient Boosting 

Gradient Boosting is an additive model that fits new predictors to the residual errors 

made by the previous predictors. Unlike AdaBoost, it does not tweak the weights of 

training instances but instead fits the new model to the residual errors. 

t 
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Given: Training data (x1, y1), . . . , (xn, yn) 
n 

Initialize: F0(x) = arg min L(yi, γ) 
γ 

For t = 1 to T : 
i=1 

1. Compute residuals rti = 
∂L(yi, F (xi)) 

∂F (xi) 

 

 
F (x)=Ft−1(x) 

for i = 1, . . . , n 

2. Fit a learner ht(x) to residuals rti to predict rti 
n 

3. Compute γt = arg min L(yi, Ft−1(xi) + γht(xi)) 
γ 

i=1 

4. Update model Ft(x) = Ft−1(x) + γtht(x) 

Output: FT (x) 

 

15 Lecture 15: Introduction to Neural Networks 

We start with the description of the neural network model 

fˆ(x) = βT x + b (89) 

Where the weights are β1, . . . , βd offset by a term b and the input vector x  Rd. To 

describe non-linear relationships between x and fˆ(x) we introduce a non-linear scalar 

function called activation function h : R  R, where the linear regression model is 

modified into a generalised linear regression model where the linear combination of 

the inputs is transformed by h 

fˆ(x) = h(βT x + b) (90) 
 

with common choices being the logistic function h(x) = 
1 

1 + e−z and rectified linear 

unit (ReLU) h(x) = max(0, x). 
The Generalised Linear Model is very simple and unable to describe the complicated 

relationship between x and fˆ(x), for this reason we use several parallel generalised 
linear regression models to build a layer and then stack these layers in a sequential 

construction. 

In the equation (90), the output is constructed by one scalar regression. To 

increase its flexibility, we instead let its output be a sum of U generalised linear 
regression models. The parameters for the k-th regression model are b(1), W (1) = 

k k 
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β1, . . . , βd and denote its output by qk, which is reached by using the various betas 

and the bias b in equation (90). The outputs of this first layer is then fed into the 

second layer, where the output is 

fˆ(x) = W (2)q1 + · · · + W (2)qU + b(2) (91) 

 

In vector notation, 

 
 

 

 

(1) 
11 
(1) 

 

1 
 
 

 
(1) 
12 

W (1) 

U 
 

 

· · · W (1)
 

· · · W  

 
 
 

 
(1) 
1 

b(1)  

. 
(1) 
U 1 

. 
(1) 
U 2 

. 

· · · WUd 

. 
(1) 
U 

W (2) = 
h

W (2), . . . , W (2)
i 

b(2) = [b(2)] (93) 

The two-layer neural network is a useful method on its own, however the real de- 

scriptive power of a neural network comes when multiple of such layers are stacked 

together, achieving a deep neural network. Each layer maps a hidden layer 

q(L) = h(W (L)q(L−1) + b(L)) (94) 
 

If we use classification, we simply set h to be the softmax, defined as 

 

1  ez2  

h(x) = 
j=1 

ezj  . 

ezM 

(95) 

16 Lecture 16: Training a neural network 

In a neural network, we find the suitable values for the parameters θ by solving the 

following optimization problem 

θˆ = arg min J(θ) = arg min 
1 Σ 

L(X , y , θ) (96) 
 

Where J(θ) is the cost function. The functional form of the los function depends on 

the problem (MSE for classification, Cross-entropy for multiclass logistic regression), 

and the optimization is usually done through gradient descent. 

The backpropagation algorithm is an important ingredient in almost all procedures, 

W 

W 

. . 

W W b 

W (1) = 
. . 

(92) 

θ θ 
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which is how the gradients and the cost function are calculated with repsect to all 

the parameters. To summarize, we want to find 
 

 
 

 

dW(L) = ∇∂W 

 

 

(l) J(θ) =  

 
∂J(θ) 

(l) 
1,1 

. 

 

  ∂J(θ)  

∂W (l) 

1,U (l−1) 

. . . . 

 

 

(97) 
 ∂J(θ)  

∂W (l) 

U (l),1 

 ∂J(θ)  

∂W (l) 

U (l),U (l−1) 

19 Lecture 19: CNNs and Regularizers 

19.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a special kind of neural network, origi- 

nally tailored for problems where the input data has a grid structure. We will focus 

to images, however CNNs can also be used for any input data on a grid, be it one 

dimensional or n dimensional. 

In contrast to a dense layer, a convolutional layer leverages two important concepts, 

sparse interactions and parameter sharing. By sparse we mean that most of the pa- 

rameters are forced to be zero, more specifically, a hidden unit only depends on the 

pixels in a small region of the image, not all pixels, and in border cases, zero padding 

is used for the regions located outside the image. 

Instead of learning separate sets of parameters for every position, we only learn 

one set of a few parameters, and use it for all links between input layer and the hidden 

units. We call this set of parameters a filter. the mapping between the input variables 

and the hidden units can be interpreted as a convolution between the input variables 

and the filter. Mathematically it can be written as 

 

qij = h 

 
F 

 
i=1 

 

Σ

j=1 

xi+k−1,j+L−1WkL

! 
 

(98) 

where xi,j denotes the zero-padded input to the layer, qi,j is the output of the layer 

and Wk,L is the filter with shape F  F . 
If we add more layers, we would like to reduce the number of hidden units and 

only store the most important information, we can use a stride parameter s, which 

essentially means that we jump s pixels. Mathematically, it is 

 

qij = h 

 
F 

 
i=1 

 

Σ

j=1 

xs(i+k−1),s(j+L−1)WkL

! 
 

(99) 
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Another way of summarising information is through pooling. A pooling layer acts 

as an additional layer after the convolutional one,it only depends on a region of 

pixels, however in contrast to convolutional layers, the pooling layer doesn’t come 

with trainable parameters. Two common versions of pooling are average pooling and 

max pooling. In average pooling the average of the units in the corresponding regions 

is computed, which in other words means that the output is: 

1 
qij = 

F 2 h 

F 

 
i=1 

Σ

j=1 

xs(i+k−1),s(j+L−1)

! 
 

(100) 

When extending to multiple channels, we have that the output from layer l at position 

i, j in channel m is 
 

Fl 
(L) 
ijm 

Fl  Ul−1  
(L−1) 
sl(i−1)+k−1,sl(j−1)+L,m 

 
(L) 
k,L,m,n 

 
(101) 

k=1 L=1 m=1 

where qi,j,m is the input to the layer and UL−1 is the number of input channels. 

In a full CNN architecture, there are multiple convolutional layers, were usually the 

number of rows and columns decrease and the number of channels increase, allowing 

for the model to encode high level features. And at the end there is one, or multiple, 

dense layers. 

 

19.2 Dropout 

Dropout is a bagging-like technique that allows us to combine many neural networks 

without the need to train them separately. The trick is to let the different models 

share parameters with each other, which reduces the computational cost and memory 

requirement. 
Mathematically we can write this as sampling a mask, m(L−1) = [m(L−1), . . . , m(L−1)] 

where  

m(L−1) = 
1 with probability r 

0 with probability 1 − r 

1 
 

 

∀i = 1, . . . , UL−1 

Ul−1 

 

 

(102) 

so the output of layer l becomes 

q(L) = h(W(L)q̃(L−1) + b(L)) (103) 

with 
 

 

q̃(L−1) = m(L−1) ⊙ q(L−1) (104) 

At evaluation for unseen data points, we simply set the mask to always be equal to 

1. 

q q W = h 

! 
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Note: when the model is over-parametrized a new phenomenon occurs, where after 

the test error explodes, it goes down again, in many cases larger overparametrized 

models always lead to a better test performance, and the test error peaks around 

N  d (number of training points almost equal to the number of parameters). This is 

possibly because commonly-used optimizers provide an implicit regularization effect. 

For example, stochasticity in the optimization process seem to help the optimizer 

to find flat global minima, which tend to give more Lipschitz models and better 

generalization. 

 

20 Lecture 20 - 21: Unsupervised Learning 

One type of (simple) but very frequent application of Unsupervised learning is clus- 

tering. The idea is to partition the data points into clusters, where each point belongs 

exactly in one class 

 

20.1 K-Means 

The simplest form of this problem is to divide the space into k distinct clusters (with 

k chosen by the user). 

a way of separating points is by using the euclidian distance, that is 
 

d(x, x′) =  x − x′  2 (105) 

And the optimization problem becomes 
 

 
arg  min 

R1,...,Rk 

k 

i=1 
|Ri| 

x,

Σ

x′∈Ri 
 x − x  

2 
 

(106) 

It can be shown that this is equivalent to select clusters minimizing the overall dis- 

tances to cluster centers 
 

 
arg  min 

R ,...,R 

Σ Σ 
x − µi  2 

 

where µi = 
 1  

x (107) 
|R | 

 

To find an approximate solution, we set cluster centers to some initial values; for each 

input we find the cluster with the closest center; update centers as the average of all 

points belonging to that cluster. 

The objective is highly non-convex, with many local minima; k-means will converge 

to a stationary point, which may not be the best one. The solution is to run it 

multiple times and select the best version. It is very sensitive to the normalisation of 

i 

k 
i=1 x∈R x∈R 
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the input values and clusters are forced to be spherical (due to the distance chosen) 

and each point can belong only to one cluster. 

To choose k, there is a heuristic method called the elbow method, where methods are 

fitted with some values, from k = 1 to k = Kmax, the loss is plotted as a function of 

k, and you select k such that going from k to k + 1 yields insignificant changes. 

 

20.2 Gaussian Mixture Model 

The idea behind the GMM is that for any class (or in this case cluster), x follows a 

gaussian. In other words, 

f (x, y) = f (x | y)π(y) (108) 

where π(y) is the marginal distribution of y. Within unsupervised learning, you want 

to know f (x), which is 
M 

π(y)N(x | µy, Σy) (109) 

y=1 

with π(y) ≥ 0 ∀y = 1, . . . , M and π(y) = 1. In our case ys are latent variables 

y 

(they exist but never observed). We can thus compute the conditional distribution 

of each yi given x 
 

w (j) = p(y = j | x ) = Σ 
π(j)N(xi | µjΣj) 

 (110) 
 

 

These conditionals allow for soft clustering, which means that we assign a probability 

of xi to belong to any cluster. 

The log likelihood is 
 

Σ

i=1 

 
log(f (xi)) = 

 

Σ

i=1 

 
log 

 
M 

 
j=1 

π(j)N(xi | µj, Σj)

! 
 

(111) 

For M > 1 there is no closed solution, so for this reason we use the Expectation- 

Maximization (EM) algorithm. 

1. Initialization: Start with initial estimates for the parameters, denoted as θ(0). 

2. E-Step: Compute the expected value of the log-likelihood function with respect 

to the conditional distribution of the latent variables given the observed data 

and current parameter estimates: 

Q(θ(t)) = E[log f (X, y | θ(t)) | X, θ(t)] 

v 

i M 
v=1 
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3. M-Step: Update the parameters by maximizing the expected log-likelihood 

function obtained in the E-step: 

θ(t+1) = arg max Q(θ(t)) 
θ 

 

4. Check for Convergence: Repeat the E-step and M-step until the changes in 

parameters θ are below a certain threshold. 

Where 

• θ(t) is the set of parameters to be estimated, usually probability of each class, 

the mean vector for that class and the variance-covariance matrix of that class. 

• E[log f (X, y | θ(t)) | X, θ(t)] = log (f (X, y | θ)p(y | X, θ)) where the first 

y 

N 

term can be rewritten as log f (X, y | θ) = log N(xi | µyi Σyi ) +log πyi which 
i=1 

means that Q(θ) can be rewritten as 
 N M 

Q(θ) = 
Σ Σ 

wi(j)
 

log N(xi | µyj , Σyj ) + log πyj

 
(112) 

 

If wi were fixed, there would exist a global maxima where 
 

1 
π(j) = 

N 

N 

wi(j) 
i=1 

 

µj N 

1 
w (j) 

Σ 
wi(j)xi 

i=1 i 
N 

i=1 

Σj N 

1 
w (j) 

Σ 
wi(j)(xi — µj)(xi — µj) 

i=1 i i=1 

The GMM, as for k-means has a non-convex problem, and it can only guarantee a 

point of stationarity, which means that poor initialization means poor local optimum. 

For this reason you run GMM multiple times with random initialization. 

 

20.3 Principal Component Analysis 

The idea behind PCA is to shrink the number of dimensions from d to k with k < d. 

If we have an orthonormal basis {ui}k then we can approximate a d-dimensional 

T 
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vector as 
k 

i 
j 

 
where x̄ =  1 

ΣN 

j=1 

xi. To understand how good or bad it is we can take the mse, 

that is (xi − x̂ i ) 2  which by orthonormality of the basis becomes 

d 
i 2 
j 

j=k+1 

The cumulative loss will then be 
N d Σ Σ 

(x − x¯ )T u
  2 

(115) 
i i j 

i=1 j=k+1 

Which can be rewritten as 
 

 
T 
j 

j=k+1 

1 
 

 

N 
i=1 

(xi − x̄i)(xi − x̄ i)T 

! 
 
uj (116) 

The middle part is the sample covariance matrix, Σ. The optimization problem thus 

becomes 

min 
Σ 

uT Σuj subject to uT uj = 1 (117) 
 

Using Lagrange multipliers, differentiating with respect to uj and setting the gradient 

to 0 we get 

Σuj = λjuj (118) 

For this reason, the eigenvectors of Σ are the solution. To minimize the loss, we have 

to find (and discard) d  k eigenvectors with the smalles eigenvalues. 

An alternative view of PCA is that it’s a variance-preserving method, where the 

variance is maximized by keeping the highest eigenvectors, so we recursively take k 
times the highest eigenvector. 

To decide how many eigenvector we need, we use the elbow criterion, just like with 

k-means. 

SVD is like PCA but we don’t have to compute Σ. Assuming you have data centered 

at 0, SVD computes the following factorization 

X = U ΓV T (119) 

where U has orthonormal columns, Γ is diagonal with non-negative entries and V is 

orthonormal. The columns of V are the eigenvectors we’re looking for and the square 

root in Γ give us the eigenvalues of Σ 
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20.4 Autoencoders 

The idea is to use a feed-forward neural network where the data is projected in a 

much smaller dimensional space and then projected back in the original space. 

If the autoencoder is linear (only one hidden layer), then setting W1 = UT (from PCA, 

is the collection of the d-dimensional span that forms Rd) and W2 = U is the best 

setting. Deep, non linear autoencoders learn to project the data, not onto a subspace 

but onto a nonlinear manifold. This manifold is the image of the decoder, and this 

is a kind of nonlinear dimensionality reduction, which can learn more powerful codes 

for a given dimensionality when compared with linear autoencoders (PCA). 

 

22 Lecture 22: Introduction to Bandits and Rein- 

forcement Learning 

22.1 Online Gradient Descent 

Online learning is the process of answering a sequence of questions given (possibly 

partial) knowledge of the correct answers to previous questions and additional avail- 

able info. 

If in supervised (offline) learning, we have that predictions are based on a large dataset 

and we want to predict a new point, in online learning, data is collected sequentially, 

we have to predict labels one-by-one, and only after is the true label revealed. Here 

predictions can influence the data collection process, so we want to collect it in a 

smart way, to optimize some criterion (for example in Reinforcement Learning - RL 

- to maximize some cumulated reward). 

Can we extend models to online learning? For the most part, yes. For example we 

can rewrite the OLS model to 

β̂ = 
n 

 
i=1 

— 

xtxT 1 
n 

t=1 

ytxt

! 

(120) 

This easy trick can’t be done with logistic regression however, as there doesn’t exist 

a closed form solution. What we can do however is to minimize the cumulated loss. 

At each step we observe xt  χ, we predict label yˆt and observe true label yt 
incurring loss ℓ(yt, ŷ t ) .  The idea is that we want to minimize regret, whic is defined 

as 
T T 

RT = ℓ(yt, ŷ t )  min ℓ(yt, g(xt) (121) 
g∈G 

t=1 t=1 

where is the best predictor up to time T , i.e. the whole dataset treated as an offline 

problem. 
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The first algorithm designed for Online Convex Optimization is Online Gradient 

Descent (OGD). Given a convex loss function L(θ; x, y) where θ are the parameters, 

and (x, y) is a data point: 

1. Initialize parameters θ0. 

2. For each iteration t = 1, 2, . . . , T : 

• Receive a data point (xt, yt). 

• Compute the gradient ∇L(θt−1; xt, yt). 

• Update the parameters: 

θt = θt−1 − ηt∇L(θt−1; xt, yt) 

where ηt is the learning rate at time t. 

3. Output θT . 

For bounded gradients (  ∇L(θ; xt, yt)  ≤ L) and parameters within a bounded do- 

main ( θ − θ′ ≤ R), the regret at time T is bounded by: 

RT ≤ RL
√

T 

This bound indicates that the average regret per round diminishes as O(1/
√

T ), 
showcasing the efficiency of OGD in converging towards the performance of the best 

possible fixed decision. 

 

22.2 Stochastic Multi-Armed Bandits 

In Stochastic Multi-Armed Bandits (MAB), the learner chooses an action at  , the 

environment chooses a loss function ℓt : [0, 1], the learner suffers a loss ℓt(at) 
and then observes some feedback. The environment can be stochastic or adversarial, 

and the action set can be continuous or finite and the feedback may be partial. 

We will explore a multi-armed bandit problem, where we have k slot machine, with 

some probability of a reward (which is the only thing we observe if we interact with 

it). A bandit algorithm is a sequential sampling strategy 

at+1 = Ft(a1, r1, . . . , at, rt) (122) 

Since there are k arms, there are k probability distributions, with mean µa for each 

arm. At each round t the learner chooses an arm at and receives a reward Xa,t ∼ Fat . 
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The goal is to maximize E 
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t=1 

rt

# 
 
.  The expectation is taken with respect to the 

probability measure on outcomes induced by the stochasticity of the algorithm and 

the distributions Fa of each arm. 
The optimal arm, a∗ ∈ arg max µa with the best mean, µ∗ = max µa. For any arm a, 

a a 

we define the sub-optimality gap as 

∆a = µ∗ − µa (123) 

The idea is to play a∗ as much as possible, minimizing the pseudo-regret defined as 

 

 

 

 

Which is basically 

 
T = Tµ∗ − E 

 
T 

 
t=1 

rt

# 
 
(124) 

 

 

where Na(t) is defined as 

T = ∆aE[Na(T )] (125) 

a∈[K] 

t 

Na(t) = 1[ai = a] (126) 

i=1 

If we just do uniform exploration, we draw each arm T/K times, 

T = T 
1 

F K 

 

 

∆a 
a∈A 

! 

(127) 

Otherwise we can use a greedy strategy, where we estimate the mean of arm a as 

µ̂ (a) = 
  1  Σ 

r 1[a = a] (128) 
 

The next action is the bet according to current estimates 

at+1 = arg max µ̂ t(a) (129) 
a 

with it being estimated as   if Na(t) = 0. The problem is that with a greedy setup 

we may follow a suboptimal strategy and incur regret at each round, so you suffer 

regret Ω(T ). 
A better idea is Explore-Then-Commit (ETC), where you explore uniformly for 

KT0 < T rounds and then commit to the arm with the best empirical mean.  If 
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we choose T0 = 
K (log T )3 guarantees RF = O(K 3 T 3 ). At the same time, fix 

a time horizon T and a number of a r m√s  K, for any bandit algorithm there exists a 

problem instance D such that RT ≥ Ω(  KT ). 
To achieve the optimal regret bounds we need to explore and exploit at the same 

time. A simple idea is the ε-greedy rule, where at round t with probability ε you 

sample at ∼ U ({1, . . . , K}) and with probability 1 − ε at = arg maxa∈K µ̂ a (t). 
Here RT ≥ K−1 ∆minT with ∆min = mina:µ ̸=µ∗ ∆a.  We could obtain regret up- 

per bound O 

K 

K log(T ) 

d2 
by setting εt 

a 

= min 
 
K 
d2t 

for 0 < d ≤ ∆ 
 
min , but this 

requires knowledge of ∆min. We can be greedy but use optimism to incentivize explo- 

ration, this is the idea of UCB1, where we build a confidence interval on the mean, 

µa : [LCBa(t), UCBa(t)] and we play the arm with the highest UCB. The UCB is 

defined as 

UCBt(a) = 
 

 
With UCBt(a) = ∞ if Nt(a) = 0 
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