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Lecture 1: Foundations of Computation

The study of theoretical computer science begins with a fundamental observation: the
manner in which a problem is represented significantly influences our understanding
and ability to solve it. This insight serves as a foundational pillar upon which much
of computation theory rests.

1.1 Problem Complexity

Consider a 9-stone game, where two players alternately select from nine stones num-
bered 1 through 9. A player wins by holding any subset of three stones whose sum is
exactly 15. While seemingly challenging, this game can be elegantly represented as a
variant of tic-tac-toe played on a magic square. In this transformed representation,
the complexity dissolves due to the familiarity and simplicity of tic-tac-toe.
This transformation underscores an essential concept:

The complexity of problem-solving often hinges upon how we represent and
interpret the problem.

Another illustrative example emerges from graph theory. Given a graph G = (V,E)
and two vertices s, t ∈ V , we ask:

• Eulerian Path: Is there a path from s to t traversing each edge exactly once?

• Hamiltonian Path: Is there a path from s to t traversing each vertex exactly
once?

Remarkably, while Eulerian paths admit efficient algorithms (via Fleury’s algorithm
or Hierholzer’s algorithm), Hamiltonian paths currently lack known efficient solutions.
Despite their apparent similarity, their computational complexities diverge drastically,
prompting fundamental inquiries into the nature of computational hardness.
A further motivating example arises in number theory:

1. Multiplication: Given primes P,Q, compute N = PQ (computationally triv-
ial).

2. Primality Testing: Given N , determine whether it is prime (efficient via
polynomial-time algorithms like AKS).

3. Factoring: Given N = PQ, find primes P,Q (no known polynomial-time
algorithm exists).
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Notably, verifying correctness (N = PQ given P,Q) is computationally straightfor-
ward, yet finding the solution (P,Q given N) is not. This dichotomy encapsulates
the celebrated P vs. NP problem and raises fundamental questions:

Is verification inherently easier than discovery?
Is decision inherently simpler than search?

1.2 Classification of Problems and the Turing Machine

Problems broadly divide into three classes:

• Undecidable Problems: No algorithm exists (e.g., the Halting Problem,
Tiling Problem).

• Decidable in Unreasonable Time: Solutions exist but only with impracti-
cally large computational resources (e.g., Hamiltonian Path, Factoring).

• Decidable in Reasonable Time: Efficient solutions exist (e.g., Eulerian
Path).

The precise boundary between reasonable and unreasonable remains unresolved (P =
NP conjecture).

1.3 Models of Computation

Before formalizing computation via Turing machines, we first introduce several sim-
pler automata models that correspond to increasingly powerful language classes.
These models capture distinct computational capabilities and serve as the founda-
tion for the Chomsky hierarchy.

Definition 1.1 (Deterministic Finite Automaton). A deterministic finite automaton
(DFA) is a 5-tuple

M = (Q,Σ, δ, q0, F ),

where:

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 ∈ Q is the start state,
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• F ⊆ Q is the set of accept (final) states.

A string w ∈ Σ∗ is accepted by M if the extended transition function δ∗ satisfies
δ∗(q0, w) ∈ F .

Definition 1.2 (Nondeterministic Finite Automaton). A nondeterministic finite au-
tomaton (NFA) is a 5-tuple

M = (Q,Σ, δ, q0, F ),

where:

• Q,Σ, q0, F are as in the DFA,

• δ : Q× Σ→ P(Q) is the transition function, mapping to subsets of states.

M accepts a string w ∈ Σ∗ if there exists a sequence of transitions starting at q0 that
processes w and ends in a state q ∈ F .

Definition 1.3 (Nondeterministic Pushdown Automaton). A nondeterministic push-
down automaton (NPDA) is a 7-tuple

M = (Q,Σ,Γ, δ, q0, Z0, F ),

where:

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the stack alphabet,

• δ : Q× (Σ ∪ {ε})× Γ→ P(Q× Γ∗) is the transition function,

• q0 ∈ Q is the initial state,

• Z0 ∈ Γ is the initial stack symbol,

• F ⊆ Q is the set of accept states.

An NPDA accepts a string if it can process the entire input and reach a state in F ,
possibly leaving any content on the stack.

Definition 1.4 (Linear Bounded Automaton). A linear bounded automaton (LBA)
is a non-deterministic Turing machine where the tape is restricted to a finite por-
tion—specifically, the tape head is confined to the portion containing the input and
at most a constant factor more space. Formally, it is a Turing machine that uses space
O(n) for input of length n. LBAs recognize exactly the class of context-sensitive lan-
guages.
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However, to rigorously analyze computational problems, we formalize computation
using the concept of the Turing Machine (TM), introduced by Alan Turing (1936).
Formally, we have the following definition:

Definition 1.5 (Turing Machine). A Turing Machine is defined as a 7-tuple:

TM =
(
Q,Σ,Γ, δ, q0, qaccept, qreject

)
with components:

1. Q: Finite set of states.

2. Σ: Finite input alphabet (not containing the blank symbol _).

3. Γ: Finite tape alphabet, containing blank symbol _, with Σ ⊂ Γ.

4. δ: Transition function, δ : Q× Γ→ Q× Γ× {L,R}.

5. q0: Initial state.

6. qaccept: Accepting state.

7. qreject: Rejecting state.

A Turing Machine configuration includes:

1. Tape contents (uqv, with q indicating the head position).

2. Current machine state.

3. Head position on the tape.

A configuration C1 yields another configuration C2 if C2 is reachable from C1 through
a single application of the transition function δ. Computation is defined as a finite
sequence of configurations:

C1 → C2 → · · · → Cn

A Turing Machine M accepts an input w if:

• C1 is the initial configuration on input w.

• Cn is an accepting configuration (state qaccept).

Conversely, M rejects w if the final configuration reaches qreject.
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Definition 1.6 (Nondeterministic Turing Machine). A nondeterministic Turing ma-
chine (NTM) is a tuple

M =
(
Q,Σ,Γ, δ, q0, qaccept, qreject

)
where:

• Q is a finite set of states.

• Σ is a finite input alphabet that does not include the blank symbol ⊔.

• Γ is a finite tape alphabet, with Σ ⊆ Γ and including the blank symbol ⊔.

• δ : Q× Γ→ P(Q× Γ× {L,R}) is the transition function, which maps a state
and a tape symbol to a set of possible moves. Each move consists of a triple
(q, a,D) where q ∈ Q is a next state, a ∈ Γ is the symbol to be written on the
tape, and D ∈ {L,R} indicates the direction in which the tape head moves.

• q0 ∈ Q is the start state.

• qaccept ∈ Q is the accept state.

• qreject ∈ Q is the reject state, with qreject ̸= qaccept.

An NTM operates nondeterministically by, at each step, choosing one of the possible
moves specified by δ for the current state and tape symbol. The machine accepts an
input if there exists at least one sequence of moves (i.e., a computation branch) that
eventually leads to the accept state qaccept. If no branch reaches qaccept, the input is
rejected (either by reaching qreject in every branch or by some branches not halting).

Proposition 1.1 (Automata Hierarchy). There exists a strict hierarchy among classes
of automata based on their computational power, as follows:

DFA ⊊ NFA ⊊ NPDA ⊊ LBA ⊊ TM ⊊ NTM

The Church–Turing thesis asserts that Turing Machines adequately capture the in-
tuitive notion of computation. More precisely:

Proposition 1.2. Any computation achievable by a physically realizable computa-
tional device can be simulated by a Turing Machine.

This thesis, though empirically supported, remains non-provable, yet it serves as the
cornerstone for theoretical computation.
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1.4 Computational Problems

Computational problems are generally categorized into:

• Search Problems: Defined by a function f : Σ∗ → Σ∗. Example: Given N ,
find (P,Q) such that N = PQ.

• Decision Problems: Defined by a language L ⊆ Σ∗. Decision problems
output binary answers (YES/NO). A decision problem is a special case of a search
problem.

Inputs to these problems are strings from a finite alphabet Σ (commonly {0, 1}), and
problems vary by their computational complexity and decidability.
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Lecture 2: Decidability and Recognizability

A Turing Machine (TM) computation on an input w has three distinct possible out-
comes:

1. Halting and accepting,

2. Halting and rejecting,

3. Never halting (the machine runs indefinitely without necessarily repeating states).

Definition 2.1 (Decider Turing Machines). A Turing Machine M that halts for every
input is called a decider.

If M accepts all w ∈ L and rejects all w /∈ L, we say M decides the language L.

Definition 2.2 (Recognizer Turing Machine). If M accepts all inputs w ∈ L and
either rejects or never halts for inputs w /∈ L, we say M recognizes the language L.

We denote L(M) as the set of strings that M accepts. This formulation motivates
critical questions:

• Are all languages decidable?

• Are all functions computable?

• Are all languages recognizable?

2.1 Language Classification

Languages can be categorized based on their computability properties.

Definition 2.3 (Regular Languages). A language L ⊆ Σ∗ is called regular if there
exists a deterministic finite automaton (DFA) M = (Q,Σ, δ, q0, F ) such that

L = {w ∈ Σ∗ | δ∗(q0, w) ∈ F},

where δ∗ is the extended transition function.

Definition 2.4 (Context-Free Languages (CF)). A language L ⊆ Σ∗ is called context-
free if there exists a context-free grammar G = (V,Σ, R, S) such that L = L(G),
where:

• V is a finite set of variables (nonterminals),
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• Σ is the finite input alphabet,

• R ⊆ V × (V ∪ Σ)∗ is a finite set of production rules of the form A → γ with
A ∈ V , γ ∈ (V ∪ Σ)∗,

• S ∈ V is the start symbol.

Equivalently, L is accepted by a nondeterministic pushdown automaton (NPDA).

Definition 2.5 (Turing-decidable Languages). A language L ⊆ Σ∗ is called Turing-
decidable (or recursive) if there exists a Turing machine M such that for all w ∈ Σ∗,
M halts on input w and:

M(w) =

{
accept, if w ∈ L,
reject, if w /∈ L.

Definition 2.6 (Turing-recognizable Languages). A language L ⊆ Σ∗ is called Turing-
recognizable (or recursively enumerable) if there exists a Turing machine M such that
for all w ∈ Σ∗:

w ∈ L ⇐⇒ M(w) accepts.

If w /∈ L, then M(w) either rejects or loops forever (i.e., may not halt).

Clearly,
R ⊆ RE

A stricter condition, R ⊂ RE, holds, and this strictness shall be demonstrated later.

Proposition 2.1 (Canonical inclusion chain).

Regular ⊂ Context-Free (CF) ⊂ Turing-decidable ⊂ Turing-recognizable

Theorem 2.1 (Closure under complement). If L ∈ R, then L ∈ R.

Proof. Let M be a Turing Machine that decides L. This means that on any input
w, M halts and either accepts (if w ∈ L) or rejects (if w /∈ L). We construct a new
Turing Machine M ′ to decide L as follows:

1. On input w, simulate M on w.

2. If M accepts, then M ′ rejects.

3. If M rejects, then M ′ accepts.

Since M halts on all inputs, M ′ also halts on all inputs. Thus, M ′ decides L.
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Theorem 2.2 (Intersection Property). If L ∈ RE and L ∈ RE, then L ∈ R.

Proof. Let M1 be a Turing Machine that recognizes L and M2 a Turing Machine that
recognizes L. We construct a new machine M that decides L using dovetailing, a
technique where both M1 and M2 are simulated in parallel.

1. On input w, start simulating M1 and M2 on w in parallel. This can be done by
alternating one step of M1 with one step of M2, repeating indefinitely until one
of them halts.

2. If M1 accepts w, then M accepts w.

3. If M2 accepts w, then M rejects w.

Since w ∈ L or w ∈ L (but not both), one of the two machines must eventually accept.
Thus, M always halts and correctly decides whether w ∈ L. Hence, L ∈ R.

Corollary 2.1. If RE \ R ̸= ∅, then there exists a language L ∈ RE such that
L /∈ RE.

Proof. Assume for contradiction that for every L ∈ RE, we also have L ∈ RE. Then
by the Intersection Theorem, every L ∈ RE would also be in R, because both L and L
are recognizable implies L is decidable. This would imply that RE = R, contradicting
the assumption that RE\R ̸= ∅. Therefore, there must exist some language L ∈ RE
such that L /∈ RE.

2.2 Variants of Turing Machines

We often consider variants of the basic Turing Machine model:

1. Stay-transition Machine: Transition function allows head to remain station-
ary:

δ : Q× Γ→ Q× Γ× {L,R, S}

2. Multi-tape Turing Machine: Uses k tapes, each with an independent head.

3. Non-deterministic Turing Machine: Allows multiple computational branches.

These variants are all equivalent computationally:

Theorem 2.3 (Equivalence of Turing Machine Models). Every k-tape or non-deterministic
Turing Machine has an equivalent single-tape deterministic Turing Machine.
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Proof. Let M be a k-tape Turing Machine. We aim to construct a single-tape Turing
Machine S that simulates M .
Tape Encoding: On the single tape of S, we interleave the k tapes of M using a
delimiter symbol (e.g., #). A configuration of M is encoded as:

#u1a1v1#u2a2v2# . . .#ukakvk#

where each uiaivi represents the content of tape i with the head scanning symbol ai,
and ui, vi are the portions to the left and right of the head, respectively.
Head Tracking: The position of each tape head is tracked by a marked symbol
(e.g., overlining or tagging ai) indicating the current scan position.
Simulation Procedure:

1. The machine S simulates one step of M by scanning the entire tape to extract
the symbols under each virtual head a1, . . . , ak.

2. Based on the current state and tuple (a1, . . . , ak), S computes the transition of
M : write symbols, move directions, and new state.

3. S performs a second pass over the tape to update each ai to its new symbol and
move the virtual head one cell in the indicated direction (left or right).

Each step of M is thus simulated in a finite number of steps by S using bounded
passes over the encoded tape. Though this simulation incurs a polynomial overhead,
it is still effective. Hence, the computational power of a multi-tape Turing Machine
is equivalent to that of a single-tape Turing Machine.

Formally, we have the following definition:

Definition 2.7 (k-tape Turing Machine). A k-tape Turing Machine is described by:

TM =
(
Q,Σ,Γ, δ, q0, qaccept, qreject

)
with the following modifications:

1. δ : Q× Γk → Q× Γk × {L,R}k

2. Each tape has an independent head.
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2.3 Algorithms and Computability: Hilbert’s 10th Problem

The notion of an algorithm precedes formalization in computer science. David Hilbert,
in 1900, posed his 10th problem:

Given a polynomial with integer coefficients, devise an algorithm deciding
if the polynomial has an integer root.

We now represent Hilbert’s problem formally as:

D = {p | p polynomial with integer root}

In 1970, Matiyasevich proved the undecidability of this set, concluding a significant
open question:

Theorem 2.4 (Matiyasevich, 1970). The set D is undecidable.

Without a rigorous definition of algorithms however, problems like Hilbert’s remained
elusive. In 1936, Alonzo Church and Alan Turing independently introduced formal
models of computation that aimed to capture the intuitive notion of an algorithm.

Church proposed the lambda calculus (λ-calculus), a minimalist formal system grounded
in function abstraction and application. Computation in this model proceeds via
symbolic reduction of expressions, using transformation rules such as α-conversion,
β-reduction, and η-conversion. Despite its syntactic simplicity, lambda calculus is
capable of expressing any computable function.

Turing introduced the Turing Machine, a mechanistic abstraction that models com-
putation through a finite set of states, an infinite tape for memory, and a read/write
head governed by a transition function. It simulates computation by altering tape
symbols and moving left or right, effectively representing algorithmic procedures in a
stepwise fashion.

Though distinct in structure, the lambda calculus and Turing Machines were later
shown to be equivalent in computational power. This foundational equivalence led to
the Church–Turing Thesis:

Proposition 2.2 (Church–Turing Thesis). Every effectively computable function (in-
tuitively computable by an algorithm) is computable by a Turing Machine.
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Lecture 3: Unsolvability and the Halting Problem

Consider the language:

D = {p | p is a polynomial with an integer root}.

Consider a simpler case:

D1 = {p | p is a polynomial over one variable x with an integer root}.

We can construct a Turing Machine M1 that recognizes D1:

1. Iterate over integer values: x = 0, 1,−1, 2,−2, . . .

2. Evaluate p(x) for each value.

3. If p(x) = 0 for some x, accept.

This approach works because we can enumerate all integers and halt if a root is found.
However, for multivariate polynomials p(x1, . . . , xk), no such recognizer suffices to
yield a decider. The search space Zk cannot be exhaustively covered by a finite-time
procedure.

3.1 Encoding of Inputs and Meta-Computational Reasoning

To describe a Turing Machine precisely, we must specify:

• The set of states Q

• The input and tape alphabets Σ and Γ

• The transition function δ

• The initial, accept, and reject states

From now on, inputs to a Turing Machine will include formal mathematical objects
such as graphs, vectors, polynomials, grammars, and automata. These must be en-
coded as strings over a finite alphabet:

• The encoding of an object O is denoted ⟨O⟩

• The encoding of a tuple O1, . . . , Ok is ⟨O1, . . . , Ok⟩

This allows us to reason about machines that operate on descriptions of machines
and other structured data.
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3.2 Problems involving Turing Machine

There are problems that can’t be computed, and understanding what cannot be
computed sheds light on the fundamental capabilities and limitations of mechanized
reasoning. Furthermore:

• It clarifies the boundaries of decidability and encourages problem simplification.

• It informs us about the inherent limitations of formal systems.

• It probes the adequacy of our computational models.

There are, however, algorithmically interesting computable problems:

• Does a Turing Machine M accept a given input w?

• Is the language of a Turing Machine empty?

• Are two Turing Machines equivalent (i.e., accept the same language)?

Turing Machines can be represented as strings, and so a Turing Machine can itself take
another machine as input. This enables a meta-theoretic investigation of machines
that simulate others.
For instance, define:

Example 3.1 (Acceptance Problem).

ATM = {⟨M,w⟩ |M is a Turing machine and M accepts w},

Theorem 3.1. ATM is Turing-recognizable.

Proof. We construct a Turing Machine U (called the Universal Turing Machine) that
simulates any Turing Machine M on input w. Given an input ⟨M,w⟩, U proceeds as
follows:

1. Decode the string ⟨M⟩ to recover the description of M : its states, transition
function, alphabets, and special states.

2. Simulate the computation of M on input w step by step.

3. If M accepts w, then U accepts ⟨M,w⟩.

4. If M rejects w, U rejects ⟨M,w⟩.

5. If M loops indefinitely, so does U .

13



Thus, U recognizes ATM, meaning it accepts precisely those strings of the form ⟨M,w⟩
such that M accepts w.

Theorem 3.2. ATM is undecidable.

Proof. Assume, for contradiction, that there exists a Turing Machine H that decides
ATM. Then, we construct a Turing Machine D as follows: On input ⟨M⟩, D runs H
on input ⟨M, ⟨M⟩⟩. If H accepts, then D rejects. If H rejects, then D accepts. That
is,

D(⟨M⟩) =

{
accept if M does not accept ⟨M⟩
reject if M accepts ⟨M⟩

Now consider what happens when we run D on its own description, ⟨D⟩:

D(⟨D⟩) =

{
accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩

This is a contradiction. Therefore, no such decider H can exist. Hence, ATM is
undecidable.

We now show that not all languages are Turing-recognizable.

Definition 3.1. A set A is countable if it is finite or if there exists a bijection f :
N→ A. Otherwise, it is uncountable.

Theorem 3.3. The set of Turing Machines is countable.

Proof. Turing Machines are described by finite strings over a finite alphabet (e.g.,
{0, 1}). The set of all such strings is countably infinite because strings over a finite
alphabet can be enumerated lexicographically. Therefore, the set of Turing Machines
is countable.

Theorem 3.4. The set of languages over Σ∗ is uncountable.

Proof. Each language is a subset of Σ∗, and the set of all subsets of a countably
infinite set is uncountable (Cantor’s Theorem). Therefore, the power set P(Σ∗) is
uncountable.

Corollary 3.1. There exist languages that are not Turing-recognizable.

Proof. Since there are only countably many Turing Machines (and hence countably
many Turing-recognizable languages), but uncountably many languages over Σ∗, it
follows that some languages are not recognized by any Turing Machine.
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Theorem 3.5. ATM /∈ RE.

Proof. By Theorem 2.2, we have that ATM ∈ RE and ATM /∈ R, thus it follows that
ATM /∈ RE. Another proof is the following:
Assume, for contradiction, that ATM ∈ RE. Then both ATM and ATM would be
recognizable. We can construct a decider as follows:

1. Given input ⟨M,w⟩, simulate both recognizers in parallel (e.g., via dovetailing).

2. If the recognizer for ATM accepts, then accept.

3. If the recognizer for ATM accepts, then reject.

Because either ⟨M,w⟩ is in ATM or its complement, one of these recognizers must
eventually accept. Thus, the simulation halts, and we have constructed a decider for
ATM, contradicting its undecidability.

This result illustrates a fundamental limitation in computation: not only are some
languages undecidable, but some cannot even be recognized by any machine.

15



Lecture 4: Undecidability and Mapping Reducibility

Many languages are non-recognizable; one classical example is Example 3.1 which is
known to be non-decidable.

Another such language is the Halting Problem.

Theorem 4.1. HALTTM, where

HALTTM = {⟨M,w⟩ |M is a Turing machine and M halts on input w},

is undecidable.

Proof. Assume, toward a contradiction, that HALTTM is decidable. That is, suppose
there exists a Turing machine H that decides HALTTM.
We now show how to decide ATM with the help of H, contradicting the known unde-
cidability of ATM.
Define a computable function f that transforms an instance ⟨M,w⟩ into an instance
⟨M ′, w′⟩ as follows. Construct a Turing machine M ′ that, on any fixed input w′ (the
specific form of w′ is irrelevant), works as follows:

(a) Simulate M on input w.

(b) If M accepts w, then M ′ halts (for example, by entering an accepting state).

(c) If M rejects w, then M ′ enters an infinite loop.

Thus, by construction, we have:

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M ′, w′⟩ ∈ HALTTM.

Now, using the decider H for HALTTM, we can decide whether ⟨M ′, w′⟩ is in HALTTM

and, therefore, decide whether M accepts w. This yields a decider for ATM, a con-
tradiction. Hence, HALTTM is undecidable.

Another undecidable problem is defining the emptiness of L(M), where L(M) denotes
the set of strings accepted by a Turing machine M .
Formally,

ETM = {⟨M⟩ |M is a Turing machine and L(M) = ∅}.

Theorem 4.2. ETM is undecidable.
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Proof. We prove undecidability by reducing ATM to ETM. Assume there exists a
decider D for ETM.
Given an instance ⟨M,w⟩ for ATM, we construct a Turing machine M ′ that operates
as follows on any input x:

(a) Ignore the input x and simulate M on input w.

(b) If M accepts w, then M ′ accepts (for instance, on any input).

(c) If M does not accept w (i.e., it rejects or loops), then M ′ never accepts any
input.

Thus, we have:

⟨M,w⟩ ∈ ATM ⇐⇒ L(M ′) ̸= ∅ ⇐⇒ ⟨M ′⟩ /∈ ETM.

Now, if D could decide ETM, one could decide ATM by computing M ′ from ⟨M,w⟩
and then running D on ⟨M ′⟩. This contradicts the undecidability of ATM. Hence,
ETM is undecidable.

4.1 Reduction Techniques: Mapping Reducibility and Com-
putable Functions

A reduction is a conversion of a problem A into a problem B such that a solution to
B can be used to solve A.

Definition 4.1 (Computable Functions). A function f : Σ∗ → Σ∗ is computable if
there exists a Turing machine M such that on every input w, M halts with the output
f(w) written on its tape.

Definition 4.2 (Mapping Reducibility). A language A is mapping reducible to a
language B, denoted A ≤m B, if there exists a computable function f : Σ∗ → Σ∗

such that for all w ∈ Σ∗,
w ∈ A ⇐⇒ f(w) ∈ B.

Theorem 4.3. If A ≤m B and B is decidable, then A is decidable.

Proof. Let f be a computable function reducing A to B and suppose there exists a
decider MB for B. Then we construct a Turing machine N that, on input w, performs
the following steps:

(i) Compute f(w).
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(ii) Run MB on f(w).

(iii) If MB accepts, then accept w; otherwise, reject w.

Since both the computation of f and the decider MB always halt, N always halts and
decides A. Hence, A is decidable.

Corollary 4.1. If A ≤m B and A is undecidable, then B is undecidable.

Returning to the Halting Problem, we now provide a reduction from ATM to HALTTM.
Recall that

HALTTM = {⟨M,w⟩ |M is a Turing machine and M halts on input w}.

We define a computable function f such that for any instance ⟨M,w⟩ we construct a
Turing machine M ′ and a fixed input w′ satisfying

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M ′, w′⟩ ∈ HALTTM.

The construction of M ′ is as follows:

(a) On input w′, simulate M on input w.

(b) If M accepts w, then M ′ halts (for example, by accepting).

(c) If M rejects w or does not halt, then M ′ does not halt (i.e., it loops indefinitely).

Thus, if there were a decider for HALTTM, one could decide ATM by computing
f(⟨M,w⟩) and testing for halting, contradicting the undecidability of ATM.

4.2 TM-Recognizability and Mapping Reductions

Define the language

ETM = {⟨M⟩ |M is a Turing machine and L(M) ̸= ∅}.

Theorem 4.4. ETM is undecidable.

Proof. We reduce ATM to ETM. Given an instance ⟨M,w⟩ for ATM, construct a Turing
machine Mw as follows:

(a) On any input x, if x ̸= w then immediately reject.

(b) If x = w, simulate M on w.
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(c) If M accepts w, then accept; if M rejects w (or loops), then do not accept.

Notice that
L(Mw) ̸= ∅ ⇐⇒ M accepts w.

That is,
⟨M,w⟩ ∈ ATM ⇐⇒ ⟨Mw⟩ ∈ ETM.

If ETM were decidable, then by computing Mw from ⟨M,w⟩ and applying a decider
for ETM, we could decide ATM. Since ATM is undecidable, it follows that ETM is
undecidable.

Theorem 4.5. If A ≤m B and B is Turing-recognizable (i.e., recursively enumerable,
or B ∈ RE), then A is Turing-recognizable (or A ∈ RE).

Proof. Let f be a computable reduction from A to B and let RB be a Turing machine
that recognizes B. We build a Turing machine RA that recognizes A as follows:

(i) On input w, compute f(w).

(ii) Run RB on f(w).

(iii) If RB accepts, then accept w; if RB does not halt or rejects, then do not accept.

Since f is computable and RB recognizes B, it follows that RA recognizes A. Hence,
A is Turing-recognizable.

Corollary 4.2. If A ≤m B and A is not Turing-recognizable (A /∈ RE), then B is
not Turing-recognizable (B /∈ RE).

Corollary 4.3. If A ≤m B, then A ≤m B.

Proof. Let f be a computable reduction from A to B, so that for every w ∈ Σ∗,

w ∈ A ⇐⇒ f(w) ∈ B.

Taking complements, we have

w /∈ A ⇐⇒ f(w) /∈ B,

which establishes that the same function f serves as a computable reduction from A
to B.
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4.3 Classes Defined via Complements

Definition 4.3. Let C be a class of languages. The class co-C is defined by

L ∈ co-C ⇐⇒ L ∈ C.

Example 4.1. The class co-RE is defined by

co-RE = {L | L ∈ RE},

where RE denotes the recursively enumerable languages (i.e., Turing-recognizable
languages).

Theorem 4.6. EQTM is neither Turing-recognizable nor co-Turing-recognizable; in
other words, EQTM /∈ RE and EQTM /∈ RE.

Proof. We prove this result by contradiction using Rice’s theorem and the method of
mapping reducibility.
First, note that the property of two Turing machines having equal languages is non-
trivial because there exist machines M1 and M2 such that L(M1) is different from
L(M2), while there are also machines for which the property holds. By Rice’s the-
orem, any non-trivial property of the language recognized by a Turing machine is
undecidable. In particular, the language EQTM is undecidable.
Now suppose, for the sake of contradiction, that EQTM were Turing-recognizable.
Then there would exist a Turing machine R that recognizes EQTM. Using a similar
diagonalization or reduction argument, one can construct a decider for a known unde-
cidable language (for instance, ATM), thus contradicting its undecidability. A similar
argument applies if one assumes that EQTM is Turing-recognizable. Hence, neither
EQTM nor its complement is Turing-recognizable.

Wrapping up undecidable problems, we have observed that the following languages

ATM = {⟨M,w⟩ |M is a TM and M accepts w}
HALTTM = {⟨M,w⟩ |M is a TM and M halts on w}
ETM = {⟨M⟩ |M is a TM and L(M) = ∅}
EQTM = {⟨M1,M2⟩ |M1,M2 are TM and L(M1) = L(M2)}

are unrecognizable and also ATM ≤m HALTTM, ATM ≤m ETM and ETM ≤m EQTM,
which means ATM unrecognizable =⇒ HALTTM, ETM, EQTM unrecognizable.

Remark 4.1. L is recognizable ⇐⇒ L is recognizable
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Lecture 5: Recognizability and Rice’s Theorem

We now ask the question of which of the following languages are recognizable:

L1 = {⟨M⟩ |M is a Turing machine and L(M) is recognizable},
L2 = {⟨M⟩ |M is a Turing machine and L(M) is finite},

Lodd =
{
⟨M⟩ | L(M) ⊆ {0, 1}∗ and ∀w ∈ L(M), |w| = 2n+ 1, n ∈ N

}
.

5.1 Rice’s Theorem

Theorem 5.1 (Rice’s Theorem). Let C ⊆ RE be a nontrivial subset of RE (i.e.,
C ̸= ∅ and C ̸= RE). Define

LC = {⟨M⟩ |M is a Turing machine and L(M) ∈ C}.

Then LC is undecidable.

Proof. Assume without loss of generality that ∅ /∈ C (if ∅ ∈ C, one may consider
the complement LC). Since C is nontrivial, there exists a language L0 ∈ C and a
Turing machine M0 such that L(M0) = L0.
We now define a computable reduction f from HALTTM to LC . Given an arbitrary
instance ⟨M,w⟩ of the halting problem, we construct a new Turing machine M⟨M,w⟩
such that:

L(M⟨M,w⟩) =

{
L0, if M accepts w,

∅, if M does not accept w.

The construction of M⟨M,w⟩ is as follows:

(a) On any input x, simulate M on input w.

(b) If the simulation of M on w eventually accepts, then run M0 on x and output
its result.

(c) If the simulation of M on w does not accept (i.e., it rejects or does not halt),
then reject x unconditionally.

Since we have assumed that ∅ /∈ C, it follows that:

⟨M,w⟩ ∈ HALTTM ⇐⇒ L(M⟨M,w⟩) = L0 ⇐⇒ ⟨M⟨M,w⟩⟩ ∈ LC .

Thus, if there were a decider for LC , one could decide HALTTM by computing
f(⟨M,w⟩) = ⟨M⟨M,w⟩⟩ and testing its membership in LC , which contradicts the known
undecidability of HALTTM. Hence, LC is undecidable.
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Example: Consider the set

C0 =
{
L | L ∈ RE, L ⊆ {0, 1}∗, ∀w ∈ L, w = 0u for some u ∈ {0, 1}∗

}
.

Then define

L0 = {⟨M⟩ |M is a Turing machine and L(M) ∈ C0}.

To prove that L0 is undecidable, note that:

(i) C0 ⊂ RE because the property “all strings in L(M) start with 0” is a semantic
property of M ’s language.

(ii) C0 is nontrivial. For example, consider the Turing machine M0 that accepts the
language 0{0, 1}∗; clearly, L(M0) ∈ C0 and ∅ /∈ C0 (by our assumption or by
choosing a nonempty language).

By Rice’s Theorem, since C0 is nontrivial, the language L0 is undecidable.

5.2 Function Version of Rice’s Theorem

Theorem 5.2 (Function Version of Rice’s Theorem). Let F1 and F2 be a nontrivial
partition of the set of computable functions, meaning that F1 and F2 are nonempty,
disjoint, and every computable function belongs to either F1 or F2. Then it is impos-
sible to decide, given a Turing machine M (or an index for a computable function),
whether the function computed by M belongs to F1 or to F2.

Proof. Assume, for the sake of contradiction, that there exists a decision procedure
D that takes as input a description ⟨M⟩ of a Turing machine and decides whether
the function fM computed by M is in F1 or in F2.
Since F1 and F2 form a nontrivial partition, there exists at least one computable
function g ∈ F1 and at least one computable function h ∈ F2. We now show how to
decide the Halting Problem using D.
Given an instance ⟨M,w⟩ of the Halting Problem, we construct a new Turing machine
M⟨M,w⟩ that operates as follows on any input x:

(1) Simulate M on input w.

(2) If the simulation halts (i.e., M accepts or rejects w), then compute g(x).

(3) If the simulation does not halt, then compute h(x).
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Thus, the function computed by M⟨M,w⟩ is exactly g if M halts on w and exactly h if
M does not halt on w.
Now, by applying decision procedure D to ⟨M⟨M,w⟩⟩, we determine whether the com-
puted function is in F1 or F2. Since g ∈ F1 and h ∈ F2, it follows that:

M halts on w ⇐⇒ fM⟨M,w⟩ = g ⇐⇒ D(⟨M⟨M,w⟩⟩) accepts.

This procedure would then decide the Halting Problem, which is impossible. There-
fore, no such decision procedure D exists.

5.3 Modified Post Correspondence Problem (MPCP)

In the Modified Post Correspondence Problem (MPCP), one is given a collection of
dominos (each domino is a pair of strings), with one domino marked to be the first.
The goal is to determine whether there exists a sequence (starting with the designated
domino) such that the concatenation of the top strings equals the concatenation of
the bottom strings.

Example 5.1. Consider the set

A =
{ a

ab
,
ca

a
,
ac

ab
,
b

ca
,
abc

c

}
.

A match for A exists if one can arrange the dominos (starting with the marked
domino) so that the top and bottom concatenations are identical.

Theorem 5.3 (Undecidability of MPCP). The language

MPCP = {⟨P ⟩ | P is an instance of MPCP with a match}

is undecidable.

Proof. We prove this theorem by a reduction from ATM. Given an arbitrary Turing
machine M and input w, we construct a domino set P such that there is a match for
P if and only if M accepts w.
The construction of P is done by encoding the computation of M on input w as a
sequence of configurations. Each domino in P corresponds to a transition between
consecutive configurations of M . The marked domino corresponds to the initial con-
figuration. The design ensures that any valid match (i.e., a sequence of dominos
whose top and bottom strings are equal) describes a valid computation history of M
starting from the initial configuration and ending in an accepting configuration.
More concretely, the domino set P is constructed so that:
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• The first domino encodes the initial configuration of M on w.

• Subsequent dominos encode the transition rules of M , allowing only valid moves
between configurations.

• A domino (or a set of dominos) encodes the acceptance condition.

Thus, there exists a match (i.e., a sequence of dominos forming equal top and bottom
strings) if and only if there exists a valid sequence of configurations of M on w that
leads to acceptance.
Therefore, if one could decide MPCP , then one could decide whether M accepts
w. This provides a decision procedure for ATM, which is known to be undecidable.
Hence, MPCP is undecidable.

Remark 5.1. Since MPCP (which requires the first domino to be fixed) is undecid-
able, it follows that the general Post Correspondence Problem (PCP), where the first
domino is not specified, is also undecidable.

5.4 Summary of Computability

Problems can be categorized by both the nature of their output (search problems
versus decision problems) and by whether they are solvable by an algorithm. In
particular, we distinguish:

• Search Problems (Functions): Problems whose goal is to compute a func-
tion.

• Decision Problems (Languages): Problems whose goal is to decide mem-
bership of an input in a language.

Moreover, problems can be divided into:

• Solvable Problems

– Decidable (languages)

– Computable (functions)

• Unsolvable Problems

– Non-decidable (languages)

– Non-recognizable (languages)
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The Church-Turing Thesis asserts that a problem is solvable or unsolvable regardless
of the computational model used, provided the model is sufficiently powerful (i.e.,
Turing-complete).

Key Concepts:

• Church-Turing Thesis

• Universal Turing Machine

• Halting Problem

• Reduction

Tools:

• Diagonalization

• Direct Reduction

• Mapping Reducibility

• Rice’s Theorem
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Lecture 6: Time Complexity and Efficiency of Algo-
rithms

A Turing machine, defined as in Definition 1.5, is as a machine with an infinite tape, a
tape head, and a finite set of states, and is said that it decides a language L following
Definition 2.1.
Now we turn to ask the question:

“Can every solvable problem be solved efficiently?”

A problem that is solvable in principle may not be solvable in practice because the
amount of time or space required might be unreasonable.

6.1 Types of Measured Complexity

There are two main types of complexity analysis:

• Worst-case analysis: The largest running time over all inputs of length n.

• Average-case analysis: The average running time over all inputs of length n.

Definition 6.1 (Running Time). Let M be a Turing machine that halts on all inputs.
The running time (or time complexity) of M is a function f : N → N where f(n) is
defined as the maximum number of steps that M takes on any input of length n.

Because the exact running time of an algorithm is often complex, we use asymptotic
analysis (or big-O analysis) to approximate its behavior.

Definition 6.2 (Big-O Notation). Let f, g : N→ R+. We say that

f(n) = O
(
g(n)

)
if there exist constants c > 0 and n0 ∈ N such that

∀n ≥ n0, f(n) ≤ c g(n).

We say that g(n) is an asymptotic upper bound for f(n).

Remark 6.1. In Big-O notation, the bigger term in a function dominates, for in-
stance,

f(n) = O(n2) +O(n) ≡ O(n2),

or
f(n) = O(2n) +O(n3) ≡ O(2n).
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Remark 6.2. Since logb n = log2 n
log2 b

, when writing in Big-O notation, f(n) = O(log n)
does not require specifying a logarithm base.

Definition 6.3 (Types of Bounds). A function f : N→ R+ is said to be:

(a) Linearly bounded if f(n) = O(n).

(b) Polynomially bounded if f(n) = O(nc) for some constant c > 1.

(c) Quasi-polynomially bounded if f(n) = O(nlogk n) for some constant k > 0.

(d) Sub-exponentially bounded if f(n) = O(2nε
) for some constant 0 < ε < 1.

(e) Exponentially bounded if f(n) = O(2nc
) for some constant c > 0.

(f) Super-exponentially bounded if f(n) = O(nn) (or more generally, if f(n) grows
faster than any exponential 2nc for all c > 0, but slower than any function of
the form nnd for all d > 0).

(g) Factorially bounded if f(n) = O(n!), with the asymptotic formula n! ∼
√
2πn

(
n
e

)n.
(h) Double-exponentially bounded if f(n) = O(22n

c

) for some constant c > 0.

(i) Non-elementarily bounded if f(n) grows faster than any finite tower of expo-
nentials of n (for example, f(n) = O(A(n, n)), where A denotes the Ackermann
function).

Definition 6.4 (Little-o Notation). Let f, g : N→ R+. We say that

f(n) = o
(
g(n)

)
if

lim
n→∞

f(n)

g(n)
= 0.

Remark 6.3. In particular, f(n) is never o
(
f(n)

)
.

Definition 6.5 (Time Complexity Classes). Let t : N→ R+ be a function. The time
complexity class

TIME
(
t(n)

)
is defined as the collection of all languages that are decidable by a Turing machine
that runs in time O(t(n)).

Now, take the language
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Example 6.1. A = {0k1k | k ≥ 0}.

Consider the Turing machineM1 that, given an input string w, performs the following:

(1) Scan the tape and reject if a 0 is found to the right of a 1.

(2) Scan across the tape, crossing off one 0 and one 1.

(3) Repeat step (2) until either all 0s or all 1s are exhausted.

(4) Reject if there remain unmatched symbols, and accept otherwise.

Let n be the length of the input string w. The running time of M1 can be analyzed
as follows:

• Step (1): A full scan of the tape requires O(n) steps to go through the tape
and an additional O(n) steps to return back, for a total of O(n) steps.

• Steps (2) and (3): In each round, one 0 and one 1 are crossed off. In the worst
case, there are n

2
rounds, and each round requires scanning O(n) steps, for a

total of O(n) · n
2
= O(n2).

• Step (4): A final scan of the tape takes O(n) steps.

Thus, the overall runtime of M1 is:

O(n) +O(n2) +O(n) = O(n2).

This implies that A ∈ TIME(n2).

Remark 6.4. It is possible to improve the time complexity for deciding A. In fact,
one may show that A ∈ TIME(n log n).

However, it turns out that this is asymptotically optimal for a single-tape Turing
machine in the following sense:

Theorem 6.1. Any language that is decidable in time o(n log n) on a single-tape
Turing machine is regular.

Proof. Let M be a deterministic single-tape Turing machine that decides a language
L in time T (n) = o(n log n); that is, for any input w of length n, M halts in at most
T (n) moves, where

lim
n→∞

T (n)

n log n
= 0.

Let Q denote the finite set of states of M .
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When M runs on an input w of length n, consider the tape as divided into cells
indexed by 1, 2, . . . , n. In addition, consider the boundaries between the cells, indexed
0, 1, . . . , n (where boundary 0 lies just before the first cell and boundary n just after
the last cell). Each time M moves its head from one cell to an adjacent cell, it
crosses one of these boundaries. Define the crossing sequence at a given boundary
as the ordered sequence of states in which M enters immediately after crossing that
boundary (one may record a state for each crossing in either direction, though the
precise convention does not affect the argument).
Since M takes at most T (n) steps on input w, each crossing sequence has length at
most T (n) and each element of the sequence is one of the finitely many states in Q.
Hence, the total number of possible distinct crossing sequences is at most

|Q|T (n).

Now, because T (n) = o(n log n), for any fixed constant ε > 0 there exists an n0 such
that for all n ≥ n0

T (n) < ε log n.

Thus, the number of distinct crossing sequences is bounded by

|Q|ε logn = nε log |Q|.

Since ε > 0 can be chosen arbitrarily small, for sufficiently large n the number of
distinct crossing sequences is o(n).
On any input of length n there are n+ 1 boundaries. By the pigeonhole principle, if
n + 1 is larger than the number of possible crossing sequences, then there exist two
distinct boundaries, say at positions i and j (with 0 ≤ i < j ≤ n), that have the
identical crossing sequence.
The significance of two identical crossing sequences is as follows. Intuitively, the
crossing sequence at a given boundary summarizes the interaction of M with the
portion of the tape to one side of that boundary. If two boundaries have identical
crossing sequences, then the manner in which M “communicates” between the regions
on either side of these boundaries is identical. In particular, if one were to pump
(i.e., repeat or remove) the segment of the tape between these two boundaries, M ’s
behavior could be simulated unchanged.
One formalizes this argument by showing that the existence of two boundaries with
the same crossing sequence implies a pumping lemma for L. In fact, one can con-
struct a finite automaton whose states represent the finitely many possible crossing
sequences. This automaton can simulate M ’s behavior on the regions of the tape
delimited by boundaries, showing that the behavior of M on long inputs is essentially
that of a finite automaton. Hence, the language L decided by M is regular.
Thus, any language decided in time T (n) = o(n log n) on a single-tape Turing machine
must be regular.
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Using alternative models of computation can affect running times. For instance, a k-
tape Turing machine may decide certain problems more efficiently than a single-tape
Turing machine, for example a 2-tape TM can decide A in O(n) time.

Theorem 6.2. Let t(n) be any function with t(n) ≥ n. Then every language decided
in time t(n) by a k-tape Turing machine has an equivalent single-tape Turing machine
deciding the language in time O

(
t(n)k

)
.

Proof. Let M be a k-tape Turing machine that decides a language L in time t(n)
on inputs of length n (with the assumption that t(n) ≥ n). We will construct a
single-tape Turing machine S that simulates M and decides L in time O

(
t(n)k

)
.

The simulation is based on encoding the entire configuration of M on a single tape.
Recall that the configuration of a k-tape Turing machine consists of the contents of
each tape, the positions of the tape heads, and the current state of the machine. We
encode this information on a single tape as follows:

#w1#w2# · · · #wk #

where each wi represents the contents of tape i (including a special mark that in-
dicates the head position on that tape). The symbol # is used as a delimiter to
separate the tapes. Since M runs in time t(n), each tape can have at most O(t(n))
nonblank symbols (beyond what is initially given), so the total length of the encoded
configuration is O(k · t(n)); with k being fixed, this length is O(t(n)).
To simulate one move of M , the single-tape machine S must perform the following
tasks:

(a) Reading the Current Configuration: S scans its tape from left to right to read
the encoded configuration. In doing so, it locates the delimiters and identifies
the symbols that are under each tape head (by checking for the special markers
embedded in each wi).

(b) Determining the Next Move: Using the current state of M and the k symbols
read from the respective tape head positions, S consults M ’s transition function
(which is fixed and hard-coded in S) to determine the new state, the new
symbols to write, and the directions in which each head should move.

(c) Updating the Configuration: S then makes another pass over the tape to update
the encoding. This involves modifying the symbols and shifting the head mark-
ers as prescribed by the transition function. In a straightforward simulation, S
might update the parts corresponding to each tape one at a time.

Each complete simulation step (steps (a) through (c)) involves scanning over the
entire encoded configuration, which has length O(t(n)). In a simulation procedure
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where the update for each of the k tapes is handled in a separate pass, the time for
one simulated move is O(t(n)) for reading plus O(t(n)) per tape for updating—that
is, roughly O(k · t(n)). In the worst-case analysis for this simulation strategy, one can
bound the time for one move by O(t(n)) multiplied by a factor that depends on k,
which, when compounded over the t(n) moves, yields a total runtime in O

(
t(n)k

)
.

Since M runs in time t(n), it makes at most t(n) moves. Simulating each move costs
at most O(t(n)) time for each of the k tapes (using a separate full-scan per tape
update, if done sequentially). Thus, the overall simulation time is bounded by

t(n) · O
(
t(n)k−1

)
= O

(
t(n)k

)
.

Thus, we have constructed a single-tape Turing machine S that simulates the k-tape
machine M in polynomial time with respect to t(n), specifically O

(
t(n)k

)
.

Proposition 6.1. All reasonable deterministic computational models are polynomi-
ally equivalent (they differ only by a polynomial factor in running time).

Thus, from now on, we focus on complexity measures that are invariant under polynomial-
time reductions.

6.2 The Class P

Definition 6.6 (Class P (or PTIME)). The class P is defined as

P =
⋃
k∈N

TIME(nk),

i.e. the set of languages that are decidable in polynomial time on a deterministic
single-tape Turing machine.

The class P is considered important because:

• It is invariant for all models of computation that are polynomially equivalent.

• It roughly corresponds to the class of problems that are realistically solvable on
a computer.

6.3 Input Representation and Its Effect on Complexity

The manner in which input is represented can also significantly affect the running
time of an algorithm. For instance,
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Example 6.2. Consider the problem of factoring an integer m. In the natural repre-
sentation, one might expect

√
m steps for trial division. However, if m is represented

in binary, its length is n = logm, and the algorithm then takes exponential time in
n.

or

Example 6.3. Given a directed graph G and two nodes s and t, the problem is to
decide whether there is a directed path from s to t. Formally, we define:

PATH = {⟨G, s, t⟩ | G is a directed graph with a directed path from s to t}.

If G hasm nodes, a brute-force search may require examining as many asmm potential
paths, resulting in super-exponential complexity.

Proposition 6.2. PATH ∈ P .

Proof. The Breadth-First Search (BFS) algorithm decides the PATH problem in time
that is linear in the size of the graph (i.e., O(m + n), where m is the number of
edges and n the number of nodes). Therefore, the PATH problem can be decided in
polynomial time.

Remark 6.5. From now on, the class P will only be denoted as PTIME.
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Lecture 7: Nondeterministic Computation and Com-
plexity Classes

Recall from Definition 1.6 that a nondeterministic Turing machine (NTM) accepts an
input if there is at least one branch of computation that leads to the accept state.
The transition function for an NTM is defined as

δ : Q× Γ→ P
(
Q× Γ× {L,R}

)
,

so that for each state and tape symbol, the machine may move to a set of possible
next states, writing a symbol and moving left or right.
To organize these computations, we view them as a computation tree where:

• Each node represents a configuration of the Turing machine.

• An edge between two nodes represents a single move (or transition) that the
machine makes according to the transition function δ.

• A branch represents one possible sequence of moves (or a computation path)
beginning at the initial configuration.

Below is a minimal visual example illustrating a computation tree.

C0 = ⟨q0, γ0⟩

C1 = ⟨q1, γ1⟩ C2 = ⟨q2, γ2⟩

C4 = ⟨q4, γ4⟩ C5 = ⟨q5, γ5⟩
Accept

C3 = ⟨q3, γ3⟩

C6 = ⟨q6, γ6⟩ C7 = ⟨qrej, γ7⟩
Reject

δ0

δ1

δ3
δ4

δ2

δ5
δ6

Figure 1: Computation tree of a nondeterministic Turing machine on input γ0 starting
from the initial state q0. Each node represents a configuration Ci = ⟨qi, γi⟩.
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In a computation tree for an NTM, the overall result is determined by whether there
exists at least one accepting branch. Even if some branches result in rejection or fail
to halt, the NTM accepts the input if any computation branch reaches an accept
state.

7.1 Equivalence and Time Complexity of Nondeterministic
Turing Machines

Theorem 7.1. Every nondeterministic Turing machine (NTM) has an equivalent
deterministic Turing machine (TM).

Proof. We prove the equivalence in two parts.

(⇐ Any deterministic Turing machine (DTM) is a special case of an NTM, where
the transition function always maps to a singleton set.

To simulate an NTM N with a deterministic Turing machine D, we construct
D so that it systematically explores all branches of N ’s computation tree. A
standard approach is to perform a Breadth-First Search (BFS) on the compu-
tation tree. Although each node has finitely many children, some branches may
be infinitely long; BFS ensures that every node at finite depth is eventually
reached.

A common simulation uses a multi-tape Turing machine. In our case, we design
a 3-tape TM D with the following tapes:

(i) Input tape: Contains the input string w.

(ii) Simulation tape: Maintains a copy of N ’s tape for the branch currently
being simulated.

(iii) Address tape: Encodes the lexicographic "address" of a branch in N ’s
computation tree, which uniquely identifies the nondeterministic choices
made.

The simulation proceeds as follows:

(i) Initialize tape 1 with w; tapes 2 and 3 are initially empty.

(ii) Copy the input from tape 1 to tape 2 to begin simulating N on w.

(iii) Use the string on tape 3 to guide the simulation along one branch in the
computation tree. In each step, consult the next symbol on tape 3 to
decide which nondeterministic move to simulate.
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(iv) If tape 3 is exhausted, or if the nondeterministic choice indicated by tape 3
is invalid, or if the current simulation leads to a reject configuration, then
update tape 3 to the lexicographically next string (thus exploring the next
branch) and restart the simulation from the initial configuration using the
new branch identifier.

(v) If any branch reaches an accept configuration, then D accepts.

This simulation ensures that if N has any accepting branch, D will eventually
find it. Hence, D is an equivalent deterministic simulation of N .

We have thus proven both directions of the statement, completing the proof.

Definition 7.1 (Time Complexity of an NTM). Let N be an NTM. The running
time of N is given by a function f : N → N where f(n) is the maximum number of
steps that N performs on any computation branch for any input of length n.

Theorem 7.2. Let t(n) be a function with t(n) ≥ n. Then every single-tape NTM
that runs in time t(n) has an equivalent deterministic single-tape TM that runs in
time 2O(t(n)).

Proof. Let N be a single-tape nondeterministic Turing machine (NTM) that, on any
input x of length n, runs in time at most t(n) (with t(n) ≥ n). This means that every
computation path on input x comprises at most t(n) moves.
A configuration of N is determined by:

(i) The current state (which is one of the finitely many states in the state set Q).

(ii) The contents of the tape. In a single-tape machine, although the tape is infi-
nite, the machine can only access and modify cells that are within a distance
proportional to the number of moves. Since N runs in at most t(n) steps, it
can only access at most O(t(n)) tape cells.

(iii) The position of the head, which can be anywhere within the portion of the tape
that has been used; this is at most on the order of t(n).

Since the tape alphabet Γ is finite and the number of states |Q| is finite, the number
of possible distinct configurations that N can enter in a computation of length at
most t(n) is bounded by

|Q| · |Γ|O(t(n)) · O(t(n)) ≤ 2O(t(n)).

Thus, although N is nondeterministic (and can explore many branches), the total
number of distinct configurations is at most exponential in t(n).
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We construct a deterministic Turing machine D that simulates N by performing a
breadth-first search (BFS) of the computation tree of N . The idea is to systematically
explore all possible computation branches of N up to t(n) steps.
The simulation proceeds as follows:

(i) Initialization. Construct the initial configuration C0 of N on input x. Place
C0 in a work area (or list) that will hold configurations to be explored.

(ii) Breadth-First Exploration. For each level from 0 to t(n):

(a) For every configuration C at the current level, use the transition function
δ to compute all configurations C ′ that are reachable from C in one move.

(b) Add each newly generated configuration C ′ to a list (or queue) of configu-
rations for the next level, but do not add duplicates.

(iii) Termination. During the simulation, if any configuration is an accept con-
figuration, then D accepts x. Otherwise, if all configurations at level t(n) have
been explored without encountering an accepting configuration, D rejects x.

Because the total number of configurations is bounded by 2O(t(n)) and each config-
uration is generated in at most polynomial time in its description, the overall time
taken by D is bounded by 2O(t(n)). In particular, at each level the number of config-
urations is at most exponential in t(n), and the cost to update each configuration is
polynomial. Therefore, the total simulation time is 2O(t(n)).

Remark 7.1 (Is P = NP?). This result shows an exponential overhead in the
worst-case simulation of nondeterminism by determinism on a single tape. A natural
question arises: can we simulate an NTM on a deterministic TM with only a polyno-
mial slowdown? Despite extensive research, no general polynomial-time simulation is
known, and this gap underpins the famous P versus NP problem.

7.2 Decision Problems, Verifiers and the Class NP

Given two nodes s and t in a directed graph G, a basic decision problem asks: Is
there a directed path from s to t? This problem is denoted as PATH and is known to
be decidable in polynomial time.
An important extension is the Hamiltonian Path problem:

HAMPATH = {⟨G, s, t⟩ | G is a directed graph that has a Hamiltonian path from s to t},

where a Hamiltonian path is a path that visits every node in G exactly once.
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When G has m nodes, a brute-force search for a Hamiltonian path has a worst-case
time complexity of Θ(mm), making it super-exponential in the size of G. While
finding a Hamiltonian path is computationally hard, if a candidate Hamiltonian path
is provided, one can verify its correctness in polynomial time.
On the other hand, not all problems are polynomially verifiable. For example, the ver-
ification complexity of HAMPATH (the complement of HAMPATH, asking whether
there is no Hamiltonian path from s to t) is an open problem.

Definition 7.2 (Verifier for a Language). A verifier for a language A is an algorithm
V such that

A = {w | ∃c a certificate (or proof) such that V accepts ⟨w, c⟩},

with the running time of V measured in terms of |w|. The certificate c is a string
that serves as evidence for the membership of w in A. A language is said to be
polynomially verifiable if it has a verifier V that runs in polynomial time.

Definition 7.3 (NP Class). NP is the class of languages that have a polynomial-
time verifier. Equivalently,

NP =
{
A | ∃V a polynomial-time verifier : A = {w | ∃c, V (⟨w, c⟩) accepts}

}
.

NP is central not only because it contains many practical problems but also because
it encapsulates the notion of efficiently verifiable proofs. It is also directly related to
the long-standing open question: Is P = NP?

7.3 Equivalence of NP and NTM Polynomial-Time Computabil-
ity

Theorem 7.3 (NP Class Membership). A language A is in NP if and only if it can
be decided by some nondeterministic Turing machine (NTM) in polynomial time.

Proof. We prove the theorem in two directions.

(⇒) Suppose A ∈ NP and let V be a polynomial-time verifier for A. We construct
an NTM N that decides A in polynomial time as follows:

(i) On input w of length n, nondeterministically guess a certificate c of length
at most nk for some constant k.

(ii) Run the verifier V on the input ⟨w, c⟩.
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(iii) Accept if V accepts; otherwise, reject.

Since V runs in polynomial time, the nondeterministic machine N also runs in
polynomial time, and N accepts w if and only if w ∈ A.

(⇐) Conversely, suppose that A is decided by an NTM N in polynomial time. We
now construct a polynomial-time verifier V for A. The idea is that the certifi-
cate c will encode the sequence of nondeterministic choices that lead N to an
accept state. On input ⟨w, c⟩, the verifier V simulates N on w using the choices
indicated by c:

(i) Interpret c as a description of the nondeterministic choices in N ’s compu-
tation path.

(ii) Simulate N on input w following the branch specified by c.
(iii) Accept if the simulated computation reaches an accept state; otherwise,

reject.

BecauseN is a polynomial-time machine, the simulation by V is also polynomial-
time. Thus, V is a polynomial-time verifier for A.

These two directions complete the proof.

Corollary 7.1. Any language in NP can be decided by a deterministic Turing ma-
chine in exponential time.

This follows from the fact that an NTM running in polynomial time can be simulated
deterministically with an exponential overhead in the worst case.

Definition 7.4 (NTIME). Let t : N → R+ be a function. The complexity class
NTIME(t(n)) is defined as

NTIME(t(n)) =
{
L
∣∣∣L is decidable by an NTM in O

(
t(n)

)
time

}
.

Definition 7.5 (Alternative Definition of NP ). An alternative definition of NP is
given by

NP =
⋃
k≥1

NTIME(nk),

which is equivalent to the class of languages decidable by a nondeterministic Turing
machine in polynomial time.

Definition 7.6 (co-NP ). A language L is in co-NP if and only if its complement L
is in NP . That is,

L ∈ co-NP ⇐⇒ L ∈ NP.
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It is currently an open problem whether NP = co-NP or if one of the inclusions is
strict.
Several scenarios are conceivable regarding the relationships among P , NP , and
co-NP :

• If P = NP , then it follows that P = NP = co-NP .

• It is possible that NP = co-NP while P ̸= NP .

• Alternatively, one might have NP ̸= co-NP with the strict inclusions P ⊆ NP
and P ⊆ co-NP .

• Another possibility is thatNP ̸= co-NP , and further P ̸= NP and P ̸= co-NP .
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Lecture 8–9: NP-Completeness and Polynomial-Time
Reductions

Recall that we gave two definitions for the NP class, namely Definition 7.3 and
Definiton 7.5.

Theorem 8.1. Definitions 7.3 and 7.5 are equivalent.

Proof. We demonstrate both directions of the theorem.

(⇒) Given a verifier V and a certificate length bound p(n) from Definition 7.3, build
an NTM N that at input w non-deterministically guesses a string c of length
≤ p(|w|) in p(|w|) steps, then deterministically runs V on ⟨w, c⟩ in O(p(|w|)),
accepting exactly when V does. Thus, N runs in polynomial time and accepts
w iff V accepts some certificate.

(⇐) Given an NTM N from Definition 7.5, with a time bound q(n), every computa-
tion that accepts input w can be described by the sequence of nondeterministic
choices (a string c of length at most q(|w|)). Define a verifier V that on input
⟨w, c⟩ simulates N on w, following exactly the choices encoded by c, and accepts
if and only if the branch halts in accept. This simulation takes polynomial time.
Hence V is a polynomial-time verifier for A.

In their result, Cook and Levin showed that some problems in NP are at least as
hard as all other problems in NP . These are the NP−complete problems.
Many natural problems in NP are either in P or NP−complete; a few remain of
unknown status.

8.1 The Cook-Levin Theorem

Definition 8.1 (SAT).

SAT = {⟨ϕ⟩ | ϕ is a satisfiable Boolean formula over n variables}.

Proposition 8.1. SAT ∈ NP .

Proof. Given ϕ on n variables, a certificate is an assignment a ∈ {0, 1}n. The verifier
evaluates ϕ(a) in time O(n + |ϕ|) and accepts iff ϕ(a) = TRUE. Hence SAT has a
poly-time verifier.
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Theorem 8.2 (Cook–Levin). SAT is NP−complete. In particular,

P = NP ⇐⇒ SAT ∈ P.

Proof. Let N = (Q,Σ,Γ, δ, q0, qacc, qrej) be a nondeterministic Turing machine and let
w ∈ Σ∗ be an input of length n. Suppose N runs in time at most T = p(n) for some
polynomial p. We will in polynomial time construct a Boolean formula

ϕN,w

that is satisfiable if and only if N has an accepting computation on w within T steps.
The construction is as follows.
We introduce two kinds of Boolean variables:

• Xt,i,a for t = 0, 1, . . . , T , i = 1, 2, . . . , T , and a ∈ Γ. Intuitively, Xt,i,a = 1 means
“at time t, the tape cell i contains the symbol a.”

• Ht,i,q for t = 0, 1, . . . , T , i = 1, 2, . . . , T , and q ∈ Q. Intuitively, Ht,i,q = 1 means
“at time t, the head is scanning cell i and the machine is in state q.”

There are O
(
T 2 (|Γ|+ |Q|)

)
variables overall, which is polynomial in T .

For each t and i:(
Xt,i,a1 ∨Xt,i,a2 ∨ · · · ∨Xt,i,a|Γ|

)
and

(
¬Xt,i,a ∨ ¬Xt,i,b

)
for every a ̸= b ∈ Γ.

This ensures that at each time and cell exactly one tape symbol holds.
For each t:(
Ht,1,q1∨Ht,1,q2∨· · ·∨Ht,T,q|Q|

)
and

(
¬Ht,i,q∨¬Ht,j,r

)
for every distinct pairs (i, q) ̸= (j, r).

Thus at each time step, the head is in exactly one cell and one state.
At time t = 0, we assert:

• For i = 1, . . . , n, X0,i,wi
holds, and for i = n+ 1, . . . , T , X0,i, holds.

• H0,1,q0 holds.

These are simple unit clauses (or small conjunctions) setting up the tape to contain
w and positioning the head in the start state at cell 1.
For each time t = 0, . . . , T −1, each cell i = 1, . . . , T , each state q ∈ Q, and each tape
symbol a ∈ Γ, consider all transitions

(q, a)
δ−→ (q′, a′, D),

where D ∈ {L,R}. We enforce that if at time t the head is at cell i in state q and
cell i contains a, then at time t+ 1:
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• Cell i contains a′.

• The head is at cell i− 1 in state q′ if D = L, or at cell i+1 in state q′ if D = R.

• All other cells j ̸= i keep their symbol: for each b ∈ Γ,(
Xt,i,b =⇒ Xt+1,i,b

)
if j ̸= i.

Each such implication can be written in CNF by rewriting

(A ∧B) =⇒ C as ¬A ∨ ¬B ∨ C,

and similarly for the “all other cells unchanged” conditions. Since there are O(T · |Γ| ·
|Q|) transitions and each yields a constant number of clauses over t steps, this set of
clauses is polynomial in T .
Finally, we assert that some time step is accepting:(

H0,1,qacc ∨H1,1,qacc ∨ · · · ∨HT,T,qacc

)
.

(We allow the head to be in any cell when it enters the accept state.)
Let ϕN,w be the conjunction of all the above clauses. By construction:

ϕN,w is satisfiable ⇐⇒ there exists an assignment to the variables

encoding a valid tableau of N ’s computation on w of length at most T that reaches qacc.

That, in turn, holds if and only if N has an accepting computation on w within T
steps.
Finally, the number of variables and clauses is O(T 2), and they can all be generated
in time polynomial in T . Since T = p(n) is polynomial in n = |w|, the reduction

⟨N,w⟩ 7→ ϕN,w

is computable in polynomial time. Hence SAT is NP-hard. Combining with SAT ∈
NP completes the proof that SAT is NP-complete, and establishes SAT ∈ P ⇐⇒
P = NP.

8.2 Polynomial-Time Reducibility

Definition 8.2 (Polynomial-Time (Mapping) Reducibility). A languageA is polynomial-
time mapping reducible to a language B, written

A ≤p B,

if there exists a function f : Σ∗ → Σ∗ computable in time polynomial in |w| such that

∀w, w ∈ A ⇐⇒ f(w) ∈ B.

42



Theorem 8.3. If A ≤p B and B ∈ P , then A ∈ P .

Proof. Let f be the poly-time reduction and let MB decide B in time O(nk). To
decide A on input w, compute f(w) in polynomial time, then run MB on f(w). The
total time remains polynomial, so A ∈ P .

Corollary 8.1. If A ≤p B and A /∈ P , then B /∈ P .

Definition 8.3 (CLIQUE).

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a clique of size k}.

Theorem 8.4. 3SAT ≤p CLIQUE.

Proof. Let F = C1∧C2∧· · ·∧Cm be a 3-CNF formula with clauses Ci = (ℓi1∨ℓi2∨ℓi3).
Construct graph G as follows:

(i) For each clause Ci, create three vertices vi1, vi2, vi3 labeled by the literals ℓi1, ℓi2, ℓi3.

(ii) For any two vertices vij and vkℓ with i ̸= k, add an edge iff their labels are not
complementary literals (i.e. not x vs. ¬x).

(iii) Set k = m.

Correctness:

• If F is satisfiable, pick one true literal ℓiji from each clause Ci. The correspond-
ing vertices {viji}mi=1 form a clique of size m because no pair is contradictory.

• Conversely, if G has a clique of size m, it must select exactly one vertex in each
clause-gadget (otherwise two vertices from the same clause are non-adjacent).
Assign each chosen literal to be true; this yields a satisfying assignment for F .

The construction takes time O(m2), hence is a polynomial-time reduction.

8.3 NP -Completeness and NP -Hardness

Definition 8.4 (NP -Completeness). A language B is NP − complete if

B ∈ NP and ∀A ∈ NP, A ≤p B.

Definition 8.5 (NP -Hardness). A language H is NP -hard if

∀A ∈ NP, A ≤p H.

Equivalently, H is NP -hard iff some NP -complete problem reduces to H in polyno-
mial time.

43



Theorem 8.5. If B is NP -complete and B ∈ P , then P = NP .

Proof. Since every A ∈ NP reduces to B in polynomial time and B is decidable
in polynomial time, by transitivity of poly-time reducibility every A ∈ NP is in P .
Hence P = NP .

Theorem 8.6. If B is NP -complete and B ≤p C for some C ∈ NP , then C is
NP-complete.

Proof. We have C ∈ NP by assumption. For any A ∈ NP , since A ≤p B and
B ≤p C, by composing the reductions we get A ≤p C. Thus C is NP -complete.

Definition 8.6 (Bounded-Halting).

BH =
{
⟨M,x, 1t⟩ |M is a TM that halts and accepts x within t steps

}
.

Often abbreviated as ⟨M,x⟩ with the understanding that t = poly(|x|).

Theorem 8.7. BH is NP -complete.

Proof. Given ⟨M,x, 1t⟩, a certificate is the accepting computation history of M on x,
encoded as a sequence of configurations of length ≤ t. A verifier can check in time
polynomial in |x|+ t that each configuration legally follows from the previous one and
that the final configuration is accepting.
Let A ∈ NP with verifier V and polynomial p(n). On input w, build the instance

f(w) =
〈
V, w, 1p(|w|)〉.

Clearly f is computable in polynomial time. Moreover,

w ∈ A ⇐⇒ ∃c : V accepts ⟨w, c⟩ in p(|w|) steps ⇐⇒
〈
V,w, 1p(|w|)〉 ∈ BH.

Thus A ≤p BH, proving NP -hardness.

Theorem 8.8 (CLIQUE is NP -Complete). CLIQUE ∈ NP , and since 3SAT ≤p

CLIQUE, it is NP -hard. Hence CLIQUE is NP -complete.

Theorem 8.9 (Vertex Cover is NP -Complete). Define

VC = {⟨G, k⟩ | G is an undirected graph with a vertex-cover of size k}.

Then VC ∈ NP , and one shows NP -hardness by reducing CLIQUE to VC via graph
complementation:

G has a clique of size k ⇐⇒ G has a vertex-cover of size |V | − k.

Hence VC is NP -complete.
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Remark 8.1. To show a new problem B is NP -complete, it suffices to give a
polynomial-time reduction from any known NP -complete problem to B.

Remark 8.2. If any NP -complete problem lies in P , then P = NP , and every
problem in NP can be solved in polynomial time.

Theorem 8.10. HAMPATH is NP -complete.

Proof. We must show:

(a) HAMPATH ∈ NP .

(b) HAMPATH is NP -hard.

A nondeterministic polynomial-time verifier V for HAMPATH works as follows on
input ⟨G, s, t⟩ and certificate c: c is a purported listing of all vertices of G in the
order they are visited. V checks in O(|V |+ |E|) time that:

• c is a sequence of length |V | containing each vertex exactly once,

• the first entry is s, the last is t,

• for each consecutive pair (u, v) in c, there is a directed edge u→ v in G.

If all checks pass, V accepts; otherwise it rejects. Thus HAMPATH ∈ NP .
We reduce from 3SAT, the canonical NP -complete problem:

3SAT = {φ | φ is a satisfiable Boolean formula in 3-CNF}.

Given a formula φ = C1 ∧ C2 ∧ · · · ∧ Cm over variables x1, . . . , xn, we construct in
polynomial time a directed graph Gφ with distinguished vertices s and t such that φ
is satisfiable ⇐⇒ ⟨Gφ, s, t⟩ ∈ HAMPATH.
Construction outline:

• Variable gadgets: For each variable xi we build a little “diamond” forcing the
Hamiltonian path to choose exactly one of two routes, corresponding to xi = True
or xi = False. Concretely, introduce vertices

ai, Ti, Fi, bi,

and edges
ai → Ti → bi, ai → Fi → bi.

Link the gadgets in sequence:

s = a1, bi → ai+1 (∀i = 1, . . . , n− 1), bn → c1.
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• Clause gadgets: After the variable gadgets, create clause vertices

c1, c2, . . . , cm, cm → t.

For each clause Cj = (ℓj1 ∨ ℓj2 ∨ ℓj3), add edges from the appropriate literal-route
vertex into cj:

if ℓjk = xi, add Ti → cj; if ℓjk = ¬xi, add Fi → cj.

Then add edges cj → cj+1 for j = 1, . . . ,m− 1, and finally cm → t.

Correctness. A Hamiltonian path from s to t must:

(i) traverse each variable gadget by choosing exactly one of the two routes ai →
Ti → bi or ai → Fi → bi, thereby fixing a truth assignment,

(ii) then proceed from bn into the clause gadgets in order,

(iii) visit each cj exactly once, which is possible only if at least one incoming edge
from the chosen literal-route is present, i.e. that clause is satisfied.

Thus the path exists if and only if there is a satisfying assignment for φ. This
completes the reduction and shows NP -hardness.

Definition 8.7 (Max-Cut). Let

MAXCUT =
{
⟨G = (V,E,w), K⟩ | ∃ (S, V \ S) cut of total weight ≥ K

}
,

where w : E → Z+ assigns positive integer weights.

Theorem 8.11. MAXCUT is NP -complete.

Proof. A certificate is a partition S ⊆ V . In polynomial time we sum the weights
w(e) of all edges e crossing between S and V \ S and check if the total is ≥ K.
We reduce from the NP -complete Partition problem:

PART =
{
a1, . . . , an |

∑
i

ai is even and there is S ⊆ [n] with
∑
i∈S

ai =
1
2

∑
i

ai
}
.

Given (a1, . . . , an) with total 2B, construct a complete graph G on n vertices, labeling
vertex i. Assign each (undirected) edge {i, j} weight ai · aj. Let K = B2.
Claim: There is a partition S with

∑
i∈S ai = B if and only if G has a cut of weight

≥ B2.
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Proof of Claim. If S sums to B, then the cut (S, S̄) has total weight∑
i∈S, j /∈S

ai aj =
(∑

i∈S

ai

)(∑
j /∈S

aj

)
= B ·B = B2.

Conversely, if some cut (S, S̄) has weight ≥ B2, then∑
i∈S

ai = X,
∑
j /∈S

aj = 2B −X,

and the cut weight is X(2B −X). The quadratic X(2B −X) achieves its maximum
B2 only at X = B. Hence X = B, giving a valid partition.
Thus PART ≤p MAXCUT, completing the NP -hardness proof

8.4 General Recipe for Proving NP -Completeness

To show a language L is NP -complete:

(i) Show L ∈ NP . Exhibit a nondeterministic polynomial-time verifier or an NTM
that decides L in polytime.

(ii) Choose a known NP -complete problem A. Common choices: 3Sat, Clique,
Hampath, . . .

(iii) Construct a polynomial-time reduction f : A → L. Given an instance x of A,
build an instance f(x) of L in time poly(|x|).

(iv) Prove correctness of the reduction:

x ∈ A ⇐⇒ f(x) ∈ L.

Once these steps are complete, L is NP -complete.

Remark 8.3. Some common pitfalls in NP -Completeness proofs are the following:

• Reducing L ≤p A with A ∈ NP -complete does not show L is NP-complete.
One must reduce A ≤p L, not the other way around.

• Do not let the reduction “solve” the problem L; it must simply transform in-
stances of A into instances of L.

• In the correctness proof, show how a solution (certificate, path, cut, etc.) for
x ∈ A converts to one for f(x) ∈ L, and vice versa.

• Never forget the first step: prove L ∈ NP .
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Lecture 10: Space Complexity and PSPACE-Completeness

An alternative measure of the complexity of a problem is the maximal amount of
space a Turing machine uses when solving it.

Definition 10.1. Let M be a Turing machine that halts on all inputs. The space
complexity of M is the function

f : N→ N, f(n) = max{number of tape cells scanned by M on any input of length n}.

Claim 10.1. If M is a decider using space f(n) ≥ n on inputs of length n, then its
time complexity is at most

2O(f(n)).

Proof. On each input of length n, M can only visit at most f(n) distinct tape cells.
A configuration of M consists of:

• the current state (one of |Q| possibilities),

• the contents of the f(n) scanned cells (each of |Γ| symbols),

• the head position (one of f(n) cells).

Hence the total number of possible configurations is

|Q| · |Γ| f(n) · f(n) = 2O(f(n)).

Since M always halts and never repeats a configuration (otherwise it would loop), it
can make at most as many steps as there are configurations. Therefore its running
time is bounded by 2O(f(n)).

Definition 10.2. For any function f : N→ R+, define

SPACE(f(n)) =
{
L | L is decidable by a deterministic TM using O(f(n)) space

}
,

NSPACE(f(n)) =
{
L | L is decidable by a nondeterministic TM using O(f(n)) space

}
.

Claim 10.2. SAT is decidable in linear space.

Proof. Let ϕ be a Boolean formula of length n with m ≤ n variables x1, . . . , xm. We
describe a deterministic TM M1 that uses O(n) space and decides satisfiability of ϕ:

(1) On a work tape, maintain a binary counter of length m to enumerate all 2m
truth assignments.
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(2) On another work tape, evaluate ϕ under the current assignment in a single
left-to-right pass, using O(n) space to keep track of the subformula values.

(3) If any evaluation yields true, accept; otherwise, increment the counter and
repeat.

(4) If all assignments are tried without acceptance, reject.

The counter uses m ≤ n cells, the evaluation uses O(n) cells, and the input tape
holds ϕ. Thus the total space is O(n).

Theorem 10.1 (Savitch’s Theorem). For any f(n) ≥ n,

NSPACE
(
f(n)

)
⊆ SPACE

(
f(n)2

)
.

Proof. Let N be an NTM that uses f(n) space on inputs of length n. On input
w, consider the directed configuration graph GN,w, whose vertices are the at most
2O(f(n)) configurations of N , and with an edge from c1 to c2 if N can move in one
step from c1 to c2. Then N accepts w if and only if there is a path from the start
configuration cstart to the unique accept configuration caccept.
We define a deterministic recursive procedure

CANYIELD(c1, c2, t)

that decides whether there exists a path of length ≤ t from c1 to c2 in GN,w. We take
t = 2d f(n) for a suitable constant d.

Algorithm CANYIELD(c1, c2, t):

(a) If t = 1, accept if c2 is reachable from c1 in one step (i.e. there is an edge),
otherwise reject.

(b) Otherwise, non-deterministically guess an intermediate configuration cm, and
recursively check

CANYIELD(c1, cm, ⌊t/2⌋) and CANYIELD(cm, c2, ⌊t/2⌋).

Converting this to a deterministic algorithm amounts to trying all possible cm one by
one and only accepting if some cm makes both recursive calls accept.

Each configuration ci can be stored inO(f(n)) space. The recursion depth is O(log t) =
O(f(n)), and at each level we store two configurations plus the counter for t. Hence
total space is

O
(
f(n)

)
×O

(
f(n)

)
= O

(
f(n)2

)
.

Thus a single deterministic TM using O(f(n)2) space can decide whether caccept is
reachable, i.e. simulate N . This shows NSPACE(f(n)) ⊆ SPACE(f(n)2).
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Corollary 10.1. PSPACE = NPSPACE.

Proof. Clearly PSPACE ⊆ NPSPACE. By Savitch’s Theorem,
NPSPACE ⊆ SPACE(poly(n)) = PSPACE.

Remark.
P ⊆ NP ⊆ NPSPACE = PSPACE ⊆ EXPTIME.

It is conjectured that all these inclusions are strict except the equality NPSPACE =
PSPACE.

Definition 10.3 (PSPACE-Completeness). A language B is PSPACE-complete if:

(i) B ∈ PSPACE.

(ii) For every A ∈ PSPACE, A ≤p B (polynomial-time many-one reduction).

If only (ii) holds, B is PSPACE-hard.

Next we introduce the canonical PSPACE-complete problem.

Definition 10.4 (TQBF).

TQBF =
{
ϕ | ϕ is a true fully-quantified Boolean formula

}
.

A fully-quantified formula has the form

Q1x1Q2x2 · · ·Qnxn F (x1, . . . , xn),

where each Qi is ∀ or ∃, and F is a propositional formula.

Theorem 10.2. TQBF is PSPACE-complete.

Proof. Let
ϕ = Q1x1Q2x2 · · ·Qnxn F (x1, . . . , xn)

be a fully-quantified Boolean formula of total length m. We describe a deterministic
algorithm Eval(ϕ) that uses O(m) space:

(1) If there are no quantifiers (i.e. n = 0), evaluate the propositional formula F
directly in O(m) time and O(m) space and return its truth value.

(2) Otherwise, let Q1x1 be the first quantifier:
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• If Q1 = ∃, then

Eval(ϕ) = Eval
(
F [x1 := 0]

)
∨ Eval

(
F [x1 := 1]

)
.

• If Q1 = ∀, then

Eval(ϕ) = Eval
(
F [x1 := 0]

)
∧ Eval

(
F [x1 := 1]

)
.

Space analysis:

• We store the remaining suffix of the quantifier prefix and the matrix F in-place
on the input tape (read-only).

• We use O(1) additional work space to record which branch we are exploring
(x1 = 0 vs. x1 = 1) and to hold recursive return values.

• The recursion depth is n ≤ m, and at each level we allocate onlyO(1) workspace
beyond the space holding the current subformula.

Hence the total space is O(m). This shows TQBF ∈ PSPACE.

Let A ∈ PSPACE. Then there is a deterministic TM M that decides A in space
p(n) on inputs of length n. Fix an input w of length n. We will in polynomial time
construct a fully-quantified formula ΦM,w such that

w ∈ A ⇐⇒ ΦM,w is true.

Because M uses at most p(n) tape cells, each configuration can be encoded as a
bitstring of length

s = O(p(n)),

describing the tape contents, head position, and finite state.
Let C be the set of all configurations of M on w. Its size is |C| ≤ 2O(p(n)). Define a
directed graph G = (C, E) where (c1, c2) ∈ E iff M can move from configuration c1
to c2 in one step.
Then M accepts w exactly if there is a path in G from the start configuration cstart
to the unique accepting configuration caccept.
Define a family of predicates

Reacht(c1, c2) =
(
there is a path of length ≤ t from c1 to c2 in G

)
.

We will construct a quantified Boolean formula for ReachT (cstart, caccept) with

T = 2d p(n)
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for a suitable constant d, which bounds the maximum number of steps M can take
without revisiting a configuration.
We build ΦM,w by expressing ReachT (cstart, caccept) with a standard “divide and con-
quer” QBF:

Reacht(c1, c2) =

(c1 = c2) ∨ E(c1, c2), if t = 1,

∃ cm
[
Reacht/2(c1, cm) ∧ Reacht/2(cm, c2)

]
, if t > 1,

where E(c1, c2) is a propositional formula (of size O(s)) that is true exactly when
(c1, c2) ∈ E.
Unfolding this definition for t = T yields a fully-quantified Boolean formula ΦM,w

whose:

• Quantifier depth is O(log T ) = O(p(n)).

• Total size is polynomial in T times O(s), which is 2O(p(n)) · O(p(n)). However,
by sharing subformulas (re-using the same subformula names) one can achieve
a final formula of size polynomial in n.

• Construction time is polynomial in |w|, since each level adds O(p(n)) new vari-
ables and clauses and there are O(p(n)) levels.

Therefore w ∈ A ⇐⇒ ΦM,w is true, establishing a polynomial-time reduction
A ≤p TQBF. This completes the PSPACE-hardness proof.
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Lecture 11: Foundations of Quantum Computation

Computing with n-bit integers on a classical Turing machine yields the following:

• Multiplication: The product of two n-bit numbers can be computed in time
O(n log n) using advanced fast Fourier transform (FFT) methods.

• Factoring: The best classical algorithm (General Number Field Sieve) factors
an n-bit integer in time roughly

exp
(
O(
√
n )

)
= O(2

√
n).

Remark 11.1. These classical complexities set baselines: multiplication is near-
linear, while factoring remains super-polynomial and intractable for large n.

11.1 Probabilistic Computation

Augmenting classical machines with randomness leads to probabilistic algorithms,
often offering polynomial speedups:

• Primality Testing (PRP vs AKS): A probabilistic probable prime test (PRP,
e.g., Miller–Rabin) runs in O(n2) time to decide if an n-bit number is prime
with controllable error probability, while the deterministic AKS test runs in
O(n6) time, hence a polynomial speed-up.

• Polynomial Identity (Zero-) Testing: Given a polynomial P (x1, . . . , xn)
represented by an arithmetic circuit, the Schwartz–Zippel lemma allows a ran-
domized test in time proportional to the circuit size to decide if P ≡ 0 with
high confidence.

Definition 11.1. A probabilistic Turing machine is a classical model equipped with
a random coin-flip oracle, enabling transitions with specified probabilities.

Proposition 11.1. The state of an n-bit probabilistic register is a probability dis-
tribution p : {0, 1}n → [0, 1], evolving under a stochastic matrix S ∈ R2n×2n with
non-negative entries and each column summing to 1.

Remark 11.2. Key features of probabilistic computing:

• Access to unbiased coin flips at unit cost.

• Simulation of stochastic processes and randomized heuristics.

• Polynomial (but conjecturally not exponential) speedups for certain problems.
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11.2 Qubits and Bra-Ket Notation

Passing from real probabilities to complex amplitudes leads us to Hilbert spaces.

Definition 11.2. A Hilbert space is a complete vector space over C with an inner
product ⟨ψ|ϕ⟩ =

∑
i ψi ϕi.

Let z = a+ ib, i2 = −1. Its magnitude is |z| =
√
a2 + b2 =

√
z̄ z.

Remark 11.3. Operators on Cd include:

• Hermitian H = H†, representing observables with real eigenvalues.

• Unitary U , satisfying U †U = UU † = I, representing reversible quantum evolu-
tion.

Definition 11.3. A qubit is a unit vector in C2:

|φ⟩ = α |0⟩+ β |1⟩ , |α|2 + |β|2 = 1.

Compare to a classical random bit, whose state (p, q)T with p+ q = 1 lives in the ℓ1
simplex (a line segment). Pure qubit states form the Bloch sphere in ℓ2 norm:

|φ⟩ = cos( θ
2
) |0⟩+ eiϕ sin( θ

2
) |1⟩ ,

parametrized by angles (θ, ϕ).

Example 11.1. The unit circle in the complex plane (ignoring global phase) illus-
trates the continuum of qubit states beyond discrete classical bits.

Column vectors are kets |ψ⟩ ∈ Cd, rows are bras ⟨ψ| = |ψ⟩†. We have:

⟨ψ|ϕ⟩ =
∑
i

ψi ϕi, ⟨ψ|ψ⟩ = ∥ψ∥2.

The computational basis states are |0⟩ = (1, 0)T , |1⟩ = (0, 1)T , orthonormal since
⟨0|1⟩ = 0.

Definition 11.4. Define the states:

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩).

Claim 11.1. These form an orthonormal basis: ⟨+|−⟩ = 0, with the Hadamard
transform

H = 1√
2

(
1 1
1 −1

)
, H2 = I.
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Lecture 12: Quantum Measurements and Dynamics

Definition 12.1. A qubit state is a unit vector |ψ⟩ ∈ C2, with respect to the standard
inner product:

∥ |ψ⟩ ∥2 =
∣∣⟨0|ψ⟩∣∣2 + ∣∣⟨1|ψ⟩∣∣2 = 1.

Theorem 12.1 (Born Rule). Let |ψ⟩ = α |0⟩+β |1⟩. Measuring in the computational
basis {|0⟩ , |1⟩} yields outcome i ∈ {0, 1} with probability

p(i) =
∣∣⟨i|ψ⟩∣∣2 = {

|α|2 i = 0,

|β|2 i = 1,

and the post-measurement state becomes
|i⟩ ⟨i|ψ√
p(i)

= |i⟩ .

Proof. Measurement is modeled by the set of projectors {P0 = |0⟩⟨0|, P1 = |1⟩⟨1|}
satisfying P0+P1 = I. The probability rule follows from p(i) = ⟨ψ|Pi|ψ⟩, and collapse
by projection postulate.
Remark 12.1. Generalized measurements (POVMs) extend this framework, but pro-
jective measurements suffice for most introductory algorithms.

12.1 Unitary Evolution and the Schrödinger Equation

Proposition 12.1. The time evolution of a closed quantum state |ψ0⟩ under a time-
independent Hamiltonian H = H† is given by the unitary operator

U(t) = e−iHt/ℏ,

so that |ψ(t)⟩ = U(t) |ψ0⟩ and U(t)†U(t) = I.
Sketch. From the Schrödinger equation iℏ d

dt
|ψ(t)⟩ = H |ψ(t)⟩, integration yields

U(t) = exp(−iHt/ℏ). Unitarity follows since H is Hermitian.
Definition 12.2. A unitary matrix U ∈ C2×2 satisfies U †U = UU † = I, preserving
inner products and norms.
Example 12.1 (Single-Qubit Gates). The following unitaries generate most single-
qubit operations:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

H = 1√
2

(
1 1
1 −1

)
, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Each corresponds to rotations about Bloch-sphere axes.
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12.2 Measurements on Quantum Circuits: Measurement and
Feedback

In measurement-based quantum circuits, outcomes of intermediate measurements can
dictate subsequent operations. This feedback loop is crucial in protocols like quantum
teleportation and error correction.

Example 12.2 (Two-Stage Circuit with Feedback). Consider the circuit:

|0⟩ H−→ |+⟩ = 1√
2
(|0⟩+ |1⟩) measure−−−−→

{
|0⟩ with p = 1/2,

|1⟩ with p = 1/2.

The classical bit outcome m ∈ {0, 1} is then used to apply a conditional gate:

|m⟩ H−→ |ϕm⟩ ,

where |ϕ0⟩ = |+⟩ and |ϕ1⟩ = |−⟩. Finally, measuring again yields a second random
bit independent of the first.
Explicitly:

• If first measurement m = 0, state collapses to |0⟩. Applying H gives |+⟩, which
measured yields 0 or 1 equally.

• If m = 1, collapse to |1⟩; H |1⟩ = |−⟩, again yielding 0 or 1 equally but with a
phase difference irrelevant to measurement.

This illustrates how measurement results can inform later operations, a building block
of adaptive quantum algorithms.

The bomb tester employs an interferometer to detect a live bomb without direct
interaction.

Example 12.3 (Elitzur–Vaidman Bomb Tester). Setup: a Mach–Zehnder interfer-
ometer splits a photon into paths |a⟩ and |b⟩ via a beam splitter BS1:

|0⟩ BS1−−→ 1√
2
(|a⟩+ |b⟩).

If path b contains a live bomb detector, any photon there triggers an explosion (in-
teraction), collapsing the superposition to |a⟩. Recombining at BS2 yields:

1√
2
(|a⟩+ |b⟩)→ |0⟩ (if no bomb); |a⟩ → 1√

2
(|0⟩+ |1⟩) (if bomb present).

Detectors D0, D1 at outputs click with probability:
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• No bomb: D0 always clicks (constructive interference).

• Live bomb: D1 clicks with 1/4 probability, revealing bomb without detonation;
with 1/2 the photon is absorbed (bomb explodes).

Thus, one can detect a bomb “interaction-free” with non-zero probability.

Remark 12.2. This thought experiment illustrates counterfactual reasoning in quan-
tum physics: information gained even when the interaction did not occur.

Another important discovery is that rapid, repeated measurements can freeze evolu-
tion of a quantum state.

Theorem 12.2 (Quantum Zeno Effect). Let |ψ⟩ evolve under H. Performing N
projective measurements onto |ψ⟩ at intervals T/N yields survival probability

PN =
∣∣∣⟨ψ| (e−iHT/(Nℏ)) |ψ⟩∣∣∣2N ≈ (

1− (∆E)2T 2

2N2ℏ2

)N

→ 1

as N →∞, where ∆E is energy uncertainty in |ψ⟩.

Outline. Expand e−iH∆t/ℏ ≈ I − iH∆t/ℏ− (H∆t)2/2ℏ2. Each measurement projects
back onto |ψ⟩, suppressing off-diagonal transitions.

12.3 Multi-Qubit States and Entanglement

Definition 12.3. The joint Hilbert space of n qubits is (C2)⊗n, with computational
basis {|x⟩}x∈{0,1}n .

Definition 12.4. Measuring |ψ⟩ ∈ (C2)⊗n in the computational basis yields outcome
x with probability | ⟨x|ψ⟩ |2, collapsing to |x⟩.

Definition 12.5 (Entanglement). A two-qubit state |ψ⟩ is product if |ψ⟩ = |α⟩⊗ |β⟩;
otherwise it is entangled.

Example 12.4 (Bell Pair). The maximally entangled state

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

is non-separable, as no single-qubit states |α⟩ , |β⟩ satisfy |Φ+⟩ = |α⟩ ⊗ |β⟩.
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Lecture 13: Multi-Qubit Gates, Universality, and Al-
gorithms

The tensor product formalism allows one to build joint operations on composite quan-
tum systems.

Definition 13.1. Given vector spaces H1, H2 and linear operators A : H1 → H1,
B : H2 → H2, the tensor product operator A⊗B acts on the joint space H1 ⊗H2 by

(A⊗B)(|α⟩ ⊗ |β⟩) = (A |α⟩)⊗ (B |β⟩)

for all product states |α⟩ ∈ H1, |β⟩ ∈ H2, and extends by linearity.

Sketch of Proof. Expanding
A =

∑
ij

aij |i⟩ ⟨j|

and
B =

∑
kl

bkl |k⟩ ⟨l| ,

A⊗B =
∑
i,j,k,l

aijbkl(|i⟩ ⟨j| ⊗ |k⟩ ⟨l|),

so its action on
∑

j,l αjβl |j⟩ |l⟩ yields the stated separable form.

Remark 13.1. Tensor products preserve linearity: although state collapse is non-
linear, unitary actions on product states remain linear maps on the composite space.

13.1 Entanglement Generation

The CNOT gate is the simplest two-qubit entangling operation.

Definition 13.2. CNOT is the unitary on C2 ⊗ C2 defined by

CNOT |α, β⟩ = |α, β ⊕ α⟩ (α, β ∈ {0, 1}),

where ⊕ denotes addition modulo 2.

Example 13.1 (Matrix Representation). In the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩},

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Proposition 13.1. CNOT together with arbitrary single-qubit unitaries generates
any two-qubit unitary up to arbitrary precision.

Applied to a superposition, CNOT creates entanglement.

Example 13.2 (Bell State Preparation). Start from |0⟩ |0⟩.

H1 : |0⟩ |0⟩ → 1√
2
(|0⟩+ |1⟩) |0⟩ ,

CNOT : 1√
2
(|0⟩ |0⟩+ |1⟩ |0⟩)→ 1√

2
(|00⟩+ |11⟩) = |Φ+⟩ .

This Bell state is maximally entangled: its reduced density matrices are maximally
mixed.

13.2 Universality of Gate Sets and Multi-Control Gates

A central result is that a small gate set can approximate any unitary.

Definition 13.3. A finite set of gates G is universal if for every n-qubit unitary
U ∈ U(2n) and ε > 0, there exists a finite sequence G1, G2, . . . , Gk ∈ G such that∥∥∥U −Gk · · ·G2G1

∥∥∥ ≤ ε.

Theorem 13.1 (Lloyd Universality). Almost any two-qubit entangling gate (e.g.
CNOT) together with generic single-qubit rotations is universal for quantum com-
putation.

Theorem 13.2 (Solovay–Kitaev). Given a finite gate set generating a dense subgroup
of SU(2), any target single-qubit gate U can be approximated within accuracy ε using
O
(
logc(1/ε)

)
gates, with c ≈ 4.

Proof Sketch. Use recursive commutator constructions to refine approximations: if
A and B approximate desired rotations, their group commutator yields higher-order
error cancellation, enabling polylogarithmic scaling.

The Toffoli gate extends control to two qubits.

Definition 13.4. The Toffoli (CCNOT) gate acts on three qubits:

CCNOT |a, b, c⟩ = |a, b, c⊕ (a · b)⟩ (a, b, c ∈ {0, 1}).

Proposition 13.2. Toffoli plus Hadamard generate all reversible Boolean functions;
with arbitrary single-qubit gates, they achieve full quantum universality.

Remark 13.2. In fault-tolerant architectures, Toffoli is often synthesized from CNOT
and T gates via ancilla-mediated constructions.
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13.3 Deutsch’s Algorithm

Deutsch’s problem illustrates quantum parallelism and interference.

Definition 13.5 (Oracle Model). A Boolean function f : {0, 1} → {0, 1} is accessed
via a unitary oracle

Uf |x, y⟩ = |x, y ⊕ f(x)⟩ .

Theorem 13.3 (Deutsch’s Algorithm). For a promised constant or balanced f , one
query to Uf suffices to decide its type with certainty, compared to two queries classi-
cally.

Proof. We start by preparing |ψ0⟩ = |0⟩ ⊗ |1⟩.
We apply hadamards

H⊗2 |ψ0⟩ =
1

2

∑
x,y

(−1)y |x, y⟩ ,

and we query the oracle, with Uf mapping |x, y⟩ → |x, y ⊕ f(x)⟩, giving

1

2

∑
x,y

(−1)y |x, y ⊕ f(x)⟩ = 1

2

∑
x,y

(−1)y⊕f(x) |x, y⟩ .

We then uncompute second Hadamard: apply H on the second qubit leaves it in
|−⟩ = 1√

2
(|0⟩ − |1⟩) and transforms the first qubit to

1
2

∑
x

(−1)f(x)
(
|0⟩+ |1⟩

)
= (−1)f(0)+(−1)f(1)

2
|0⟩+ (−1)f(0)−(−1)f(1)

2
|1⟩ .

And lastly, measurement of the first qubit yields 0 if f(0) = f(1) (constant) and 1
otherwise (balanced), distinguishing with certainty.

Remark 13.3. Deutsch’s algorithm generalizes to Deutsch–Jozsa on n-bit functions,
detecting promised global properties with exponentially fewer queries than classical.
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Lecture 14: Quantum Oracles and Algorithms

14.1 Quantum Oracle Construction and Complexity Class

Definition 14.1 (Quantum Oracle Qf ). For a classical function f : {0, 1}n →
{0, 1}m, its quantum oracle is the unitary operator

Qf : |x⟩in |y⟩out 7→ |x⟩in |y ⊕ f(x)⟩out ,

where x ∈ {0, 1}n is the query register and y ∈ {0, 1}m is the target register initialized
to a known state (often 0m).

This construction ensures reversibility: even if f is irreversible, Qf is a bijection on
the computational basis and thus extends linearly to a unitary on the full Hilbert
space.

Remark 14.1 (Implementation Complexity). If f requires Tf classical steps (gates)
to evaluate, then Qf can be implemented with O(Tf ) reversible gates plus overhead
for uncomputing ancillae, yielding a circuit of size poly(n,m, Tf ).

Definition 14.2 (BQP). BQP (Bounded-error Quantum Polynomial time) is the
class of promise decision problems solvable by a polynomial-size, uniform quantum
circuit family {Cn} such that for each input x of length n:

• If x is a YES instance, Cn(x) accepts with probability ≥ 2/3.

• If x is a NO instance, Cn(x) accepts with probability ≤ 1/3.

Error amplification via repetition can reduce the error to exponentially small in poly-
nomial time.

14.2 Deutsch’s Problem: One-Query Quantum Solution

Definition 14.3 (Deutsch’s Problem). Given an oracle Og for g : {0, 1} → {0, 1},
determine whether g is constant (g(0) = g(1)) or balanced (g(0) ̸= g(1)) using as few
queries as possible.

Theorem 14.1. Deutsch’s algorithm solves the problem with a single quantum query
and zero error.

Proof. The Step-by-Step Procedure is

1. Initialization: Prepare two qubits in state |ψ0⟩ = |0⟩1 |1⟩2.
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2. Hadamard Transform: Apply H to both qubits: |ψ1⟩ = (H ⊗ H) |0, 1⟩ =
1
2

∑
x,y(−1)y |x, y⟩.

3. Oracle Query: Apply Og to get |ψ2⟩ = Og |ψ1⟩ = 1
2

∑
x,y(−1)y |x, y ⊕ g(x)⟩.

4. Interference: Apply H to the first qubit: |ψ3⟩ = (H ⊗ I) |ψ2⟩. One finds that
the first-qubit amplitude for |0⟩ is nonzero only when g is constant.

5. Measurement: Measure the first qubit. Outcome 0 implies g is constant; 1
implies balanced.

Example 14.1 (Quantum Circuit).

|0⟩ H
Og

H

|1⟩ H

14.3 Simon’s Problem and Exponential Speedup

Definition 14.4 (Simon’s Problem). Let n ∈ N and let

f : {0, 1}n −→ {0, 1}n

be an oracle (black-box) function that satisfies the two-to-one promise

∀x, y ∈ {0, 1}n : f(x) = f(y) ⇐⇒ y = x⊕ s

for a single, unknown, non-zero “secret string” s ∈ {0, 1}n \ {0n}. The task is to
determine s using queries to the oracle unitary1

Of : |x⟩ |y⟩ 7−→ |x⟩ |y ⊕ f(x)⟩ .

Theorem 14.2 (Simon’s Algorithm). There exists a quantum algorithm that, with
probability ≥ 1− ε (for arbitrary constant 0 < ε < 1),

• queries the oracle Of at most N = O(n) times,

• performs poly(n) additional (classical and quantum) operations,

• and outputs the secret string s.

Any bounded-error classical algorithm needs Ω
(
2n/2

)
oracle queries.

1Throughout, registers are assumed to be n-qubit and ⊕ is bit-wise XOR.
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Algorithm 1 One iteration of Simon’s quantum procedure
Require: Oracle Of as in Definition 14.4
1: procedure SimonIter(Of )
2: initialize two n-qubit registers in |0n⟩ |0n⟩
3: Apply H⊗n to the first register

|ψ1⟩ = 2−n/2
∑

x∈{0,1}n
|x⟩ |0n⟩

4: Query the oracle Of

|ψ2⟩ = 2−n/2
∑
x

|x⟩ |f(x)⟩

5: Measure the second register → f(x0)
|ψ3⟩ = 2−1/2

(
|x0⟩+ |x0 ⊕ s⟩

)
6: Apply H⊗n to the first register

|ψ4⟩ = 2−(n+1)/2
∑

y∈{0,1}n
(−1)x0·y

(
1 + (−1)s·y

)
|y⟩

7: Measure the first register; return y ▷ only y with s · y = 0 have non-zero
amplitude

State-evolution summary. Writing just the first register after the measurement
in line 4 of Algorithm 1:

|ψpost⟩ =
1√
2
(|x0⟩+ |x0 ⊕ s⟩)

H⊗n

−−−→ 1√
2n+1

∑
y

(−1)x0·y
(
1 + (−1)s·y

)
|y⟩ .

The global phase (−1)x0·y is irrelevant; the crucial factor 1+(−1)s·y filters out exactly
the 2n−1 bit-strings orthogonal to s.

Sketch of Proof. Repeat Algorithm 1 until you have obtained m ≥ n − 1 linearly
independent vectors y(1), . . . , y(m) satisfying y(i) · s = 0. A coupon-collector argument
shows thatm = n+O(1) suffices with probability 1−ε. Collect them parity equations
in matrix form Y s = 0 over F2 and solve by Gaussian elimination in O(n3) classical
time. The secret s ̸= 0n is the unique non-zero vector in the null-space of Y .

Simon’s original collision argument shows that a classical algorithm must evaluate
f on Ω(2n/2) inputs on average before seeing any collision f(x) = f(y), which is
necessary to learn s = x⊕ y.

Example 14.2 (A hand-worked case for n = 3). Let the secret be s = 1102. Suppose
two iterations of Algorithm 1 yield

y(1) = 010, y(2) = 001.
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The resulting linear system is

0 · s1 ⊕ 1 · s2 ⊕ 0 · s3 = 0,

0 · s1 ⊕ 0 · s2 ⊕ 1 · s3 = 0,
=⇒ s = 110.

Indeed two independent equations suffice because the space orthogonal to s has di-
mension n− 1 = 2.

Remark 14.2 (Complexity table).

Resource Quantum (Simon) Classical (best known)
Oracle queries O(n) Ω(2n/2)
Gate depth O(n) n/a
Classical post-processing O(n3) O(n · 2n/2)

Example 14.3 (Quantum Circuit).

|0n⟩ H⊗n

Of

H⊗n

|0n⟩
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Lecture 15: Grover’s Search Algorithm

Grover’s algorithm finds a marked element in an unstructured database of sizeN = 2n

using onlyO
(√

N/k
)

uses of the oracle, where k is the (unknown) number of solutions.
This is a quadratic improvement over the classical Θ(N/k) bound and is optimal in
the quantum query model.

15.1 Problem set-up

Definition 15.1 (Search Oracle). Let f : {0, 1}n → {0, 1} be a Boolean indicator
function whose 1-inputs form the marked set M = {x : f(x) = 1} with |M | = k ≥ 1.
The phase-oracle unitary is

Of : |x⟩ 7−→ (−1)f(x) |x⟩
(
= I − 2

∑
x∈M

|x⟩⟨x|
)
.

Definition 15.2 (Unstructured Search). Given black-box access to Of , output any
element of M . We assume no promise on the structure of M beyond its size k.

Remark 15.1 (Classical baseline). Sampling inputs uniformly until a hit is seen
requires Θ(N/k) oracle calls on average. No classical algorithm can do better in the
worst case.

15.2 Geometry of amplitude amplification

Let
|α⟩ = 1√

k

∑
x∈M

|x⟩ , |β⟩ = 1√
N − k

∑
x/∈M

|x⟩ ,

so that {|α⟩ , |β⟩} is an orthonormal basis for the two-dimensional subspace that
matters. Write the initial uniform superposition as

|ψ0⟩ =
1√
N

∑
x

|x⟩ = cos θ |β⟩+ sin θ |α⟩ , sin2 θ =
k

N
.

Two reflections:

(1) Oracle reflection Of : multiplies |α⟩ by −1 and leaves |β⟩ unchanged.

(2) Diffusion operator

D = 2 |ψ0⟩⟨ψ0| − I = H⊗n
(
2 |0⟩⟨0| − I

)
H⊗n

reflects about |ψ0⟩.
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Their product
G = DOf

is a rotation by angle 2θ in the plane span{|β⟩ , |α⟩}:

G

(
|β⟩
|α⟩

)
=

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)(
|β⟩
|α⟩

)
.

15.3 Grover’s algorithm

Algorithm 2 Grover’s quantum search (outputs a marked element with high prob-
ability)
Require: Oracle Of ; unknown number of marked items k ≥ 1
1: Prepare |ψ0⟩ = H⊗n |0n⟩
2: Estimate k (if not given) or replace the loop count in line 4 with the canonical

BBHT iterative–deepening schedule
3: Compute r =

⌊ π
4θ

⌋
= Θ

(√
N/k

)
4: for i← 1 to r do
5: Apply Of followed by D ▷ one Grover step
6: Measure in the computational basis and output the observed n-bit string

15.4 Performance guarantee

Theorem 15.1 (Success probability). After r Grover iterations,

Pr[output ∈M ] = sin2
(
(2r + 1)θ

)
≥ 1−O

(
k/N

)
.

Choosing r ≈ π
4

√
N/k makes the right-hand side 1−O

(
1/N

)
.

Sketch of Proof. Express the state after r rounds as |ψr⟩ = cos((2r + 1)θ) |β⟩ +
sin((2r + 1)θ) |α⟩. Measuring in the computational basis lands in M exactly when
the projection onto |α⟩ is observed, yielding the asserted probability.

Remark 15.2 (Optimality). Bennett, Bernstein, Brassard and Vazirani showed that
any quantum algorithm needs Ω(

√
N/k) oracle calls, so Grover’s query complexity is

optimal up to constant factors.
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15.5 Worked example (n = 4, k = 1)

With N = 16 and a single marked string, sin θ = 1/
√
16 = 1/4 and θ ≈ 14.48◦. Hence

r = ⌊π/(4θ)⌋ = 3. A textbook simulation yields

iteration Pr[marked]
0 1/16
1 9/16
2 15/16
3 99/100

after which measuring gives the unique solution with probability ≥ 0.99.

15.6 Resource summary

Resource Grover (quantum) Classical random sampling
Oracle queries O

(√
N/k

)
Θ(N/k)

Gate depth O
(√

N/k · n
)

n/a
Extra qubits n+Θ(1) n

Example 15.1 (Single Grover iteration as a circuit).

Of H⊗n 2|0⟩⟨0| − I H⊗n

The middle gate can be decomposed into one multi-controlled Z surrounded by layer-
wise Hadamards.

Remark 15.3 (Known-k vs. unknown-k). When k is unknown, the canonical solution
is the BBHT variable-iteration algorithm: repeat Grover with geometrically increasing
iteration counts r = 1, 2, 4, . . ., measuring after each block and aborting on success.
This keeps the overall expected queries in Θ

(√
N/k

)
.
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Lecture 16: The Discrete Logarithm Problem

Throughout let G = ⟨g⟩ be a cyclic group of order N > 1 written multiplicatively.
(For concreteness think of G = Z×

p or an elliptic-curve group E(Fq).)

16.1 Problem statement and classical background

Definition 16.1 (Cyclic group). A finite group G is cyclic if G = {g0, g1, . . . , gN−1}
for some generator g.

Definition 16.2 (Discrete logarithm). Given h ∈ G there is a unique x ∈ {0, . . . , N−
1} such that gx = h. We write x = logg h.

Definition 16.3 (Discrete Logarithm Problem (DLP)). Input (G, g, h) with known
N = |G|; output x = logg h.

Remark 16.1 (Best classical algorithms). Generic algorithms such as baby-step/giant-
step and Pollard’s ρ require Θ(

√
N) group operations—exponential in the input size

n = ⌈log2N⌉. Special-purpose index-calculus methods exist for Z×
p but not for elliptic

curves; in either case, no known polynomial classical algorithm is available.

16.2 From DLP to a hidden period

Fix the unknown x = logg h. Define the two-variable function

f : ZN × ZN −→ G, f(a, b) = g a h−b. (1)

Proposition 16.1 (Period lattice). f is constant along the one-dimensional lattice
L = { t (x, 1) | t ∈ ZN} ⊂ Z2

N :

f(a, b) = f(a′, b′) ⇐⇒ (a′, b′)− (a, b) ∈ L.

Proof. Compute f(a + xt, b + t) = ga+xth−(b+t) = gah−b (gxh−1)t = f(a, b) because
gx = h. The converse follows by rearranging the equality ga−a′ = hb−b′ = gx(b−b′) in
the exponent ring ZN .

Thus DLP is a hidden-subgroup / hidden-period instance over the Abelian group
Z2

N with hidden shift (x, 1).
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16.3 Shor’s quantum algorithm

Algorithm 3 Shor’s discrete-log algorithm (outputs x = loggh with high probability)
Require: Cyclic group ⟨g⟩ of order N ; element h = gx (unknown x) ▷ n = ⌈log2N⌉

qubits per index register
1: Prepare three registers: two n-qubit index registers in |0n, 0n⟩ and one group

register in |1G⟩
2: Apply H⊗2n to the index registers: |ψ1⟩ = 1

N

∑
a,b∈ZN

|a, b⟩ |1G⟩

3: Oracle Uf : compute f(a, b) = gah b into the group register ▷ one group
multiplication

State becomes |ψ2⟩ = 1
N

∑
a,b

|a, b⟩ |f(a, b)⟩

4: Measure the group register, leaving a uniform superposition of one coset of L =

{(t,−xt)}: |ψ3(a0, b0)⟩ = 1√
N

N−1∑
t=0

|a0 + xt, b0 + t⟩

5: Apply QFTN to each index register: |u, v⟩ 7→ 1
N

∑
k,ℓ∈ZN

e2πi(uk+vℓ)/N |k, ℓ⟩

Resulting state 1√
N

∑
k,ℓ

(
1
N

N−1∑
t=0

e2πi(k+ℓx)t/N
)

︸ ︷︷ ︸
δ k+ℓx≡0

e2πi(a0k+b0ℓ)/N |k, ℓ⟩

6: Measure the index registers; outcome (k, ℓ) obeys

k + ℓx ≡ 0 (mod N). (2)

7: Classical post-processing: if gcd(ℓ,N) = 1 then x ≡ −k ℓ−1 (mod N); else
repeat from line 3 until an invertible ℓ is obtained
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16.4 State-evolution table

Step State of the first two registers
0 |0n, 0n⟩
1 1

N

∑
a,b

|a, b⟩

3 1√
N

∑
t

|a0 + xt, b0 + t⟩

5 1
N

∑
k,ℓ: k+ℓx≡0

e2πi(a0k+b0ℓ)/N |k, ℓ⟩

6 Classical pair (k, ℓ) s.t. k + ℓx = 0

16.5 Correctness and success probability

Theorem 16.1. Algorithm 3 returns x = logg h with probability at least 1−O(1/N)
after O(logN) repetitions.

Sketch. Each run produces a random solution of Eq. (2). The probability that the
sampled ℓ is coprime to N is φ(N)/N ≥ Ω(1/ log logN) by Euler’s theorem; hence
O(logN) independent runs suffice to obtain at least one invertible ℓ with overwhelm-
ing probability. The modular inversion and multiplication recover x uniquely.

Gate complexity. The two QFTs dominate the circuit cost: QFTN can be imple-
mented with 1

2
n(n− 1) = O(n2) controlled-phase gates, so the whole algorithm uses

O(n3) elementary gates and O(n) qubits.

16.6 Worked example (N = 11)

Let G = Z×
11 = ⟨2⟩ and let h = 9. A quick calculation shows 27 ≡ 9 (mod 11), so

x = 7.
1. Choose random (a0, b0); suppose the oracle measurement returns f = 2.
2. The collapsed superposition is 1√

11

∑10
t=0 |a0 + 7t, b0 + t⟩.

3. After the double QFT a measurement yields e.g. (k, ℓ) = (3, 5) because 3+7·5 ≡
0 (mod 11).

4. Since gcd(5, 11) = 1, x ≡ −3 · 5−1 ≡ −3 · 9 ≡ −27 ≡ 7 (mod 11), the desired
answer.
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16.7 Resource comparison

Resource Shor (quantum) Baby-step & Pollard ρ (classical)
Group operations O

(
log3N

)
Θ
(√

N
)

Oracle queries n (group mults.)
√
N

Gate count O
(
n3
)

n/a
Qubits / space 3n+Θ(1)

√
N

Finite-precision implementations of QFTN can be truncated to O(n2) controlled
rotations without affecting the success probability by more than 2−n. Rounding errors
in the classical modular arithmetic are negligible if n-bit integers are used.
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Lecture 17: Quantum Phase Estimation

Quantum Phase Estimation (QPE) extracts the eigenphase ϕ ∈ [0, 1) of a known
unitary U given access to an eigenstate |ψ⟩ and controlled powers U2j . It is the
engine behind Shor’s order-finding, quantum chemistry eigenvalue algorithms, and
the modern family of amplitude- estimation routines.

17.1 Problem definition and basic notation

Definition 17.1 (Eigenphase). Let U be an m-qubit unitary and |ψ⟩ an eigenstate:

U |ψ⟩ = e2πiϕ |ψ⟩ , ϕ ∈ [0, 1).

Given n ∈ N (desired precision), the phase-estimation task is to output ϕ̃ ∈ {0, . . . , 2n−
1} such that2

∣∣ϕ− ϕ̃/2n∣∣ < 2−(n+1) with probability ≥ 1− ε for some target error ε.

The canonical QPE circuit uses
• an n-qubit phase register initialised to |0n⟩,
• an m-qubit target register initialised to the eigenstate |ψ⟩.

17.2 Circuit diagram

Example 17.1 (Textbook QPE circuit).

|0⟩ H •

QFT−1|0⟩ H •
...

... . . . ...
|0⟩ H •

|ψ⟩ U2n−1
U2n−2 · · ·

The j-th control (counting MSB = 0) applies the power U2j .

17.3 Step-by-step state evolution

For clarity denote the phase register basis as |k⟩ where k ∈ {0, . . . , 2n − 1}.
2Equivalently, ϕ̃ is the nearest integer to 2nϕ.
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Step Joint state
(0) |0n⟩ |ψ⟩

(1) H⊗n 1
2n/2

2n−1∑
k=0

|k⟩ |ψ⟩

(2) controlled U2j 1
2n/2

∑
k

e2πikϕ |k⟩ |ψ⟩ (∵ k =
∑
j

kj2
j)

(3) QFT−1 1
2n

∑
y,k

e2πi(kϕ−yk/2n) |y⟩ |ψ⟩

(4) measure classical n-bit y with y ≈ 2nϕ

The amplitude on |y⟩ is

1
2n

∑
k

e2πik(ϕ−y/2n) =
sin

(
π(2nϕ− y)

)
2n sin

(
π(ϕ− y/2n)

) eiπ(2nϕ−y)

—the discrete Dirichlet kernel—yielding the familiar ≥ 4/π2 ≈ 0.405 success proba-
bility for rounding to the nearest integer.

17.4 Algorithm description

Algorithm 4 Standard quantum–phase-estimation (QPE) algorithm — outputs an
n-bit estimate ϕ̃ of the phase ϕ
Require: Controlled powers U2j for j = 0, . . . , n− 1; eigenstate preparation |ψ⟩
1: Initialise the phase register in |0n⟩ and the target register in |ψ⟩
2: Apply H⊗n to the phase register
3: for j ← 0 to n− 1 do
4: Apply controlled-U2j with qubit j as the control
5: Apply inverse QFT, QFT−1

2n , to the phase register
6: Measure the phase register and output ϕ̃← binary(y)

17.5 Success probability and precision

Theorem 17.1 (QPE accuracy). Let δ = |ϕ− ϕ̃/2n|. After one run of Algorithm 4:
(a) If ϕ has an exact n-bit binary expansion, the outcome equals that expansion with

probability 1.
(b) Otherwise Pr

[
δ < 2−(n+1)

]
≥ 4

π2 .
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(c) Repeating the algorithm t = ⌈log(1/ε)⌉ times and taking the median raises the
confidence to 1− ε.

Idea. Items (a)–(b) follow by evaluating the Dirichlet kernel squared and summing
over the two closest integers to 2nϕ. Item (c) is standard Chernoff boosting.

17.6 Resource analysis

• Qubits. n (phase) + m (target) + Θ(1) work qubits if needed.

• Gate count. QFT−1 uses 1
2
n(n−1) = O(n2) controlled-phase gates; line 4 costs

are problem-dependent.

• Circuit depth. The QFT can be parallelised to O(n log n); power-of-two con-
trolled unitaries often dominate depth.

• Fault-tolerance. Approximating small controlled rotations to O(n + log(1/ε))
bits suffices to keep the overall algorithmic error below ε.

17.7 Variants and optimisations

Semiclassical (Kitaev) QPE. Replace the full n-qubit QFT with a one-qubit
inverse QFT performed iteratively: after measuring the most-significant qubit, clas-
sically rotate away its phase shift before measuring the next. This reduces phase-
register qubits from n to 1 at the cost of feedback latency.

Iterative QPE. The iterative algorithm of Dobšíček–Johansson–Andersson–Nori
requires only a single ancilla qubit and re-preparation of |ψ⟩ each round, useful on
shallow hardware.

Prony-style adaptive QPE. Adaptive strategies (e.g. robust phase estimation,
Fourier Prony) vary the controlled-unitary exponent dynamically and require fewer
long-range controlled rotations, trading circuitry for classical post-processing.

17.8 Worked example (ϕ = 0.101(2))

Take n = 3 and ϕ = 5
8
= 0.1012.
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|Φ1⟩ = 1
23/2

7∑
k=0

|k⟩ |ψ⟩

|Φ2⟩ = 1
23/2

∑
k e

2πik(5/8) |k⟩ |ψ⟩
|Φ3⟩ = |101⟩ |ψ⟩ (exact bin. phase)
Measurement ⇒ 101 (= 5)

Because 23ϕ = 5 is an integer, the estimate is perfect.

17.9 Applications

(1) Order finding : Estimating the phase of the modular-multiplication operator
recovers the order r such that ar ≡ 1 (mod N) (Shor’s factoring algorithm).

(2) Hamiltonian eigenvalue estimation: With U = e−iHt and |ψ⟩ an eigenstate of
H, ϕ = E t/2π yields the energy E.

(3) Amplitude estimation: The QFT−1 on a two-dimensional rotation operator gives
quadratic speed-ups in Monte-Carlo style algorithms.
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Lecture 18: Order Finding and Integer Factoring

18.1 Preliminaries

Definition 18.1 (Multiplicative order). For coprime a,N (gcd(a,N) = 1) the order
of a modulo N is the least r > 0 with ar ≡ 1 (mod N).

Definition 18.2 (Order-Finding Problem). Given integers N > 1 and a coprime to
N , output ordN(a).

Remark 18.1 (Classical hardness). No classical algorithm is known that solves
OrderFinding or Factoring in poly(logN) time; the best general methods run in sub-
exponential exp

(
Õ((logN)1/3)

)
time.

18.2 Order and factoring

Proposition 18.1 (Order ⇒ factor). If r is even and a r/2 ̸≡ −1 (mod N), then
gcd

(
ar/2± 1, N

)
is a non-trivial divisor of N .

Proof. Because ar ≡ 1 we have
(
ar/2 − 1

)(
ar/2 + 1

)
≡ 0 (mod N). Neither factor

is 0 mod N by hypothesis, yet their product is; therefore each shares a non-empty
proper divisor with N .

Example 18.1 (Toy instance N = 15, a = 2). 24 ≡ 1 (mod 15) ⇒ r = 4. Then
22 = 4 and gcd(4− 1, 15) = 3, gcd(4 + 1, 15) = 5 factor 15.

18.3 Quantum order-finding via phase estimation

Let m = ⌈log2N⌉ so that N < 2m. Define the modular-multiplication unitary

Ua : |x⟩ 7−→ |a x mod N⟩ , x ∈ {0, . . . , N − 1}.

Because a is coprime to N , Ua acts as a permutation and hence is unitary on an
m-qubit Hilbert space.

18.3.1 Eigen-decomposition.

For each s ∈ {0, . . . , r− 1} the “Fourier” state |Ψs⟩ = 1√
r

r−1∑
k=0

e−2πisk/r |akmod N⟩ sat-

isfies Ua |Ψs⟩ = e2πis/r |Ψs⟩. Thus estimating the phase of |Ψs⟩ amounts to estimating
s/r.
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Algorithm 5 Quantum order-finding — outputs the order r of a mod N with high
probability
Require: Coprime integers a,N ; precision n ≥ 2m such that 2n ≥ N2

1: Initialise the phase register in |0n⟩ and the target register in |1⟩ (i.e. |a0⟩)

2: Apply H⊗n to the phase register, obtaining 1
2n/2

2n−1∑
k=0

|k⟩ |1⟩

3: for j ← 0 to n− 1 do
4: Apply controlled-U 2j

a with qubit j as the control ▷ costs one modular
exponentiation a2j mod N

5: Apply inverse QFT, QFT−1
2n , to the phase register

6: Measure the phase register, obtaining y ∈ {0, . . . , 2n − 1} and set θ̃ ← y/2n

7: Use the continued-fraction algorithm to recover the closest fraction s/r with 0 <
r < N

18.3.2 State evolution detail

After the controlled-unitaries the joint state is

1
2n/2

2n−1∑
k=0

|k⟩ |ak mod N⟩ = 1√
r

r−1∑
s=0

(
1

2n/2

2n−1∑
k=0

e2πiks/r |k⟩
)
|Ψs⟩ .

Measuring |Ψs⟩ collapses the phase register to a Dirichlet kernel centred at s/r, exactly
as in QPE (cf. Lecture 17). The choice n ≥ 2m guarantees that rounding θ̃ with a
continued-fraction expansion finds the correct r with probability ≥ 1−O(1/N).

18.4 From order to factors: Shor’s algorithm

Algorithm 6 Shor’s factoring algorithm — factors N in expected polylogarithmic
time
1: Select a random a ∈ {2, . . . , N − 1}
2: g ← gcd(a,N) ▷ trivial factor check
3: if g > 1 then return g

4: Run Algorithm 5 to obtain r = ordN(a)
5: if r is odd or ar/2 ≡ −1 (mod N) then

goto Step 1 ▷ restart
6: else
7: p← gcd

(
ar/2 − 1, N

)
, q ← gcd

(
ar/2 + 1, N

)
8: return (p, q)
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Theorem 18.1 (Complexity). Algorithm 6 factors N using O(log2N) qubits, O(log3N)
primitive gates, and succeeds with probability bounded below by a constant > 1/2.

Idea. ⌈2 log2N⌉ phase qubits suffice (n = 2m). Each controlled modular-exponentiation
costs O(log2N) gates, repeated n times, and the QFT takes O(n2). The probability
that a random a yields an even r with ar/2 ̸≡ −1 is ≥ 1

2
for composite N ; thus a

constant expected number of iterations suffices.

18.5 Worked run: N = 15

(1) Pick a = 7 (coprime to 15). Classically 74 ≡ 1 (mod 15)⇒ r = 4; the quantum
routine would return 1

4
from the continued-fraction step.

(2) r even; 72 = 49 ≡ 4 ̸≡ −1 (mod 15).
(3) Factors: gcd(4− 1, 15) = 3, gcd(4 + 1, 15) = 5.

18.6 Resource summary

Resource Shor (quantum) Best classical (GNFS)
Time O(log3N) exp

(
Õ((logN)1/3)

)
Qubits / memory O(log2N) poly(logN)

Oracle calls n controlled U2j

a n/a
Bottleneck modular exponentiation sieving / linear algebra
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Lecture 19: Hidden Variables and Tsirelson’s Bound

19.1 Local hidden-variable models

Definition 19.1 (Local hidden-variable (LHV) model). For bipartite measurement
settings a ∈ A, b ∈ B (held by Alice and Bob), an LHV model assumes

(i) a shared random variable λ ∈ Λ with distribution ρ(λ) ≥ 0,
∫
Λ
ρ = 1;

(ii) deterministic response functions A : A× Λ→ {±1} and B : B × Λ→ {±1};
giving joint expectation

E(a, b) =

∫
Λ

dλ ρ(λ)A(a, λ)B(b, λ).

Locality means A (resp. B) depends only on a (resp. b), not on the distant choice.

Remark 19.1 (Bell’s theorem). Bell (1964) proved that the set of correlations at-
tainable by LHV models is a strict subset of quantum-mechanical correlations.

19.2 The CHSH game

Definition 19.2 (CHSH game). Referee samples independent inputs x, y ∈ {0, 1}
uniformly; Alice outputs a ∈ {0, 1}, Bob b ∈ {0, 1}. They win if a⊕ b = x ∧ y.

Proposition 19.1 (Classical (LHV) bound). Any classical—or LHV—strategy wins
CHSH with probability ≤ 3

4
.

Proof. It suffices to check deterministic strategies a = a(x), b = b(y). Enumerating
the four input pairs shows that at most three constraints can be satisfied simultane-
ously. Shared randomness only convex-combines deterministic payouts, so the bound
persists.

Example 19.1 (Optimal classical strategy). Output a = 0, b = 0 always; wins unless
(x, y) = (1, 1), hence success probability 3/4.

19.3 Quantum strategy and Tsirelson’s bound

Alice and Bob share the Bell state |Φ+⟩ = 1√
2

(
|00⟩ + |11⟩

)
and apply Pauli-operator

observables

A0 = σz, A1 = σx, B0 =
σz+σx√

2
, B1 =

σz−σx√
2
,

mapping eigenvalue +1 to output bit 0 and −1 to 1.
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Definition 19.3 (CHSH operator).

M = A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 − A1 ⊗B1.

Theorem 19.1 (Tsirelson’s bound). For any state ρ on any Hilbert space and any
dichotomic observables Ai, Bj with eigenvalues ±1,

⟨M⟩ρ ≤ 2
√
2.

Equivalently, the maximal CHSH winning probability is

pmax =
1
2
+

√
2
4
≈ 0.8536.

Sketch. Compute M2 = 41 + [A0, A1] ⊗ [B0, B1]. Because ∥[A0, A1]∥ ≤ 2 · 2 and
likewise for Bob, ∥M2∥ ≤ 81⇒ ∥M∥ ≤ 2

√
2. Hence |⟨M⟩| ≤ 2

√
2. The observables

above and |Φ+⟩ saturate the bound.

Corollary 19.1 (Separation of classical, quantum, supra-quantum). 3
4
< 1

2
+

√
2
4
< 1,

so quantum mechanics violates the classical limit yet does not reach the algebraic
maximum 1 allowed by no-signalling alone (cf. Popescu–Rohrlich boxes).

19.4 State-evolution view of the optimal quantum strategy

Using the Jordan-frame decomposition {|Φ+⟩ , |Ψ−⟩} (Bell basis), one verifies

M |Φ+⟩ = 2
√
2 |Φ+⟩ , M |Ψ−⟩ = −2

√
2 |Ψ−⟩ ,

so performing the CHSH measurements projects onto |Φ+⟩ with eigenvalue +2
√
2

with probability 1, giving the optimal expectation.
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Lecture 20: The No-Cloning Theorem and Quantum
Money

This lecture covers three pillars:
(1) No-cloning, no-deleting, and no-broadcast — why quantum information

cannot be copied or destroyed unitarily.
(2) Wiesner’s private-key quantum money — the first protocol (1970) and its

security proof.
(3) Public-key quantum money — modern proposals, challenges, and open

questions.
Throughout, Hilbert spaces are finite-dimensional; D(H) denotes density opera-

tors on H.

20.1 The No-Cloning Theorem

Theorem 20.1 (No-cloning). There is no unitary U and fixed “blank” state |0⟩ such
that U

(
|ψ⟩ |0⟩

)
= |ψ⟩ |ψ⟩ for every pure state |ψ⟩.

Proof via inner products. Assume U clones both |ψ⟩ , |ϕ⟩:

⟨ψ⟩ϕ =⟨ψ, 0|U †U |ϕ, 0⟩ =⟨ψ, ψ| |ϕ, ϕ⟩ =
∣∣⟨ψ⟩ϕ∣∣2.

Let c = ⟨ψ⟩ϕ. Then c = c2 ⇒ c ∈ {0, 1}. Most pairs of states satisfy 0 < |c| < 1,
contradiction.

Proof via linearity. Define U that clones both |0⟩ , |1⟩: U
(
|b⟩ |0⟩

)
= |b⟩ |b⟩ , b ∈

{0, 1}. Linearity on |+⟩ = (|0⟩+ |1⟩)/
√
2 implies

U
(
|+⟩ |0⟩

)
= 1√

2

(
|0, 0⟩+ |1, 1⟩

)
̸= |+⟩ |+⟩ = 1

2

(
|0, 0⟩+ |0, 1⟩+ |1, 0⟩+ |1, 1⟩

)
.

So U fails on |+⟩.

Corollary 20.1 (No-deleting). No unitary deletes an arbitrary copy: U
(
|ψ⟩ |ψ⟩

)
=

|ψ⟩ |0⟩ for all |ψ⟩.

Theorem 20.2 (No-broadcast). A channel B : ρ 7→ ρAB that marginally preserves
ρ on each subsystem exists for all ρ =⇒ all states commute. Hence non-commuting
quantum information cannot even be approximately cloned onto mixed outputs.

Remark 20.1 (Implications). No-cloning underlies BB84 key distribution, quantum
authentication, quantum software copy-protection, and quantum money.
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20.2 Wiesner’s Private-Key Quantum Money (1970)

Definition 20.1 (Banknote). Parameters: security length n. A note is a classical
serial s and a quantum register |ψs⟩ =

⊗n
i=1 |ri⟩bi , where each basis bi ∈ {Z,X}

and bit ri ∈ {0, 1} are chosen uniformly; |r⟩Z ≡ |r⟩, |r⟩X ≡ H |r⟩. The bank keeps(
s, {bi, ri}ni=1

)
secret.

Algorithm 7 Bank-side verification procedure
Require: Serial number s and purported n-qubit state ρ
1: Retrieve (bi, ri)

n
i=1 from the private database

2: for i← 1 to n do ▷ can be executed in parallel
3: Measure qubit i in basis bi, obtaining r′i
4: if r′i ̸= ri then
5: return Reject
6: return Accept

Proposition 20.1 (Completeness). Honest notes pass Algorithm 7 with probability
1.

Proposition 20.2 (One-note counterfeiting bound). Let an adversary start with a
single valid note (s, ρ). The maximum probability of producing two states that both
pass independent verification is at most 2−n(1 + 2−

n
2 ).

Sketch. Optimal attack: measure each qubit in the Breidbart basis, gaining θ≈ 15◦

of basis information, then contrive two guesses. The attack is equivalent to cloning n
random BB84 states, whose single-qubit optimal fidelity is F ⋆ = 1

2
+ 1

2
√
2
. Chernoff

bounds on the Hamming-weight deviation yield the exponent above.

Remark 20.2 (Exponential security). For n = 256, the forging success is≤ 2−256—astronomically
small.

Classical serial+signature Wiesner
Has public verification? yes no
Copyable by insider? trivial no (quantum)
Needs online bank? no yes
Security based on math assumption physics (no-cloning)
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20.3 Public-Key Quantum Money

Definition 20.2 (Public-key quantum money). A scheme consists of (Gen,Ver) such
that

• Gen(1κ)→(s, |ψs⟩) (serial and state) is poly-time quantum.
• Vers is a public circuit; Vers |ψs⟩ |0⟩ = |Accept⟩.
• For any QPT AVers given (s, |ψs⟩), Pr[two accepts] ≤ negl(κ).

Candidate families:

(a) Hidden-subspace money (Aaronson–Christiano). Secret S ≤ Fm
2 , note |ψS⟩ =

1√
|S|

∑
x∈S |x⟩, public verification uses membership oracles χS, χS⊥ . Security :

reduces to list-decoding random low-degree polynomials (unproved).

(b) Quantum lightning (Zhandry 2017). Produces states with “unique serials”;
collision resistance relies on multi-collision hash assumptions or LWE-type struc-
ture.

(c) Stabiliser money (Farhi et al.). Notes are random stabiliser states authen-
ticated by Vers measuring a commuting Hamiltonian. Broken if too random;
secure variant remains open.

Scheme Verification Assumption Status
Wiesner (1970) private none proven
Hidden subspace public polynomial-hiding unbroken∗

Quantum lightning public hash/LWE unbroken∗

Stabiliser money public none broken

Table 1: Snapshot of quantum-money landscape. ∗no general attack is known.
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Lecture 21: Quantum Teleportation

Teleportation transmits an unknown quantum state without physically sending the
particle. It converts one ebit of entanglement |Φ+⟩ = 1√

2
(|00⟩+|11⟩) plus two classical

bits into an identity quantum channel. The protocol is fundamental in quantum
networking, fault-tolerant gates, and measurement-based quantum computing.

21.1 Preliminaries

Bell basis:
|Φ±⟩ = 1√

2
(|00⟩ ± |11⟩), |Ψ±⟩ = 1√

2
(|01⟩ ± |10⟩).

We denote them by
|Φm1m2⟩ (m1,m2 ∈ {0, 1})

with ordering

|Φ00⟩ = |Φ+⟩ , |Φ01⟩ = |Ψ+⟩ , |Φ10⟩ = |Φ−⟩ , |Φ11⟩ = |Ψ−⟩ .

Pauli corrections:

Z ≡ σz, X ≡ σx, X
m2Zm1 ∈ {I, Z,X,XZ}

indexed by the two classical bits.

21.2 Teleportation task

Definition 21.1 (Teleportation). Let Alice hold an unknown qubit |ψ⟩ = α |0⟩+β |1⟩.
Alice and Bob share an entangled pair |Φ+⟩A′B. Using only local operations and two
classical bits from Alice to Bob, the goal is for Bob to end up with |ψ⟩ while no copy
remains with Alice.

21.3 Protocol and state evolution

|ψ⟩A • H m1

|00⟩A′B /
√
2

Xm2Zm1

|ψ⟩B
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Algorithm 8 LOCC procedure (Alice → Bob)
Require: Alice: qubits A (unknown), A′ (half EPR); Bob: qubit B.
1: Alice applies CNOT (A→A′) then Hadamard on A.
2: Alice measures AA′ in the computational basis, obtaining bits (m1,m2).
3: Alice sends (m1,m2) to Bob (2 cbits).
4: Bob applies Zm1Xm2 to B.
5: Bob now holds |ψ⟩; Alice’s qubits are classical.

Step Joint state
Init |ψ⟩A |Φ+⟩A′B = 1√

2
(α |0⟩ |00⟩+ β |1⟩ |11⟩)

Bell rewrite = 1
2

∑
m1,m2∈{0,1} |Φm1m2⟩AA′ (Xm2Zm1 |ψ⟩)B

Measure AA′ Outcome (m1,m2) collapses remainder to Xm2Zm1 |ψ⟩
Bob’s correction Zm1Xm2Xm2Zm1 |ψ⟩ = |ψ⟩

Because the post-measurement state depends only on (m1,m2), two classical bits
suffice.

21.4 Proofs of optimality and correctness

Proposition 21.1 (Correctness). In the absence of noise, Algorithm 21.3 outputs
Bob’s state ρB = |ψ⟩ ⟨ψ|.

Proposition 21.2 (Two cbits are necessary). Perfect teleportation sends one arbi-
trary qubit, i.e. carries one qubit of quantum information Q = 1. Holevo’s bound
limits the quantum capacity of c classical bits to Q ≤ c/2. Hence c ≥ 2.

Idea. Replace entanglement with a maximally mixed ρA′B; any LOCC protocol then
realises a classical channel. Holevo information transmitted in teleportation is one
bit per classical bit; saturating requires two bits.

21.5 Fidelity under noisy entanglement

Assume the shared Bell pair is subjected to a depolarising channel Dp(ρ) = (1−p)ρ+
p
3

∑3
i=1 σiρσi. Let |ψ⟩⟨ψ| be the target state. Teleportation fidelity

F (p) = ⟨ψ| Etel
(
|ψ⟩⟨ψ|

)
|ψ⟩ = 1− 2p

3
.

A fully mixed pair (p = 3/4) gives Fclassical = 2/3, matching the optimal measure-
and-prepare classical limit.

85



21.6 Generalisations

Replace Bell basis with |Φmn⟩ = 1√
d

∑d−1
k=0 ω

km |k⟩ |k + n mod d⟩ , ω = e2πi/d, and
Pauli-like corrections X |k⟩ = |k + 1⟩ , Z |k⟩ = ωk |k⟩. Teleport requires log2 d

2 clas-
sical bits and one maximally entangled qudit pair.

For optical modes, EPR is approximated by two-mode squeezed states; homodyne
detection plus displacement operations achieve fidelity F = 1

1+e−2r where r is the
squeezing parameter.

21.7 Applications

• Entanglement swapping. Teleporting one half of an EPR pair produces a new
EPR pair between distant parties—crucial for quantum repeaters.

• Measurement-based QC. Teleportation is the primitive that propagates logical
qubits across a cluster state.

• Fault-tolerant gates. Magic-state injection and gate teleportation realise non-
Clifford gates via Pauli corrections conditioned on measurement outcomes.

21.8 Resource summary

Resource Cost per qubit teleported
Entanglement 1 ebit
Classical communication 2 cbits (A→B)
Quantum operation depth (ideal) 1 CNOT + 1H + 1 Pauli
Minimum fidelity (noisy p) 1− 2p

3

Optimal classical fidelity 2/3
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Lecture 22: Quantum Complexity Classes and Their
Classical Counterparts

Quantum algorithms define complexity classes that refine, rather than replace, the
classical landscape. We review the core families, the best known inclusions, and the
main open problems.

AMScdP@ >>> BPP@ >>> BQP@ >>> AWPP@ >>> PP@ >>> PSPACE@ >>>
EXP

@VVV @. @VVV @. @. @| @|
@. @. EQP @. @. QMA @»> QIP=PSPACE

@. @. @. @. @VVV
@. @. @. @. QRG=EXP

22.1 Classical baselines

Definition 22.1 (Deterministic & probabilistic poly-time). P and BPP are the sets
of languages decidable by a deterministic, respectively probabilistic, polynomial-time
Turing machine with bounded two-sided error ε < 1

2
.

Amplification reduces ε exponentially at linear cost.

22.2 Exact and bounded-error quantum poly-time

Uniform circuit families. A language L ⊆ {0, 1}∗ is in BQP if there is a log-
space classical Turing machine that on input 1n outputs a description of an nO(1)-gate
quantum circuit Cn such that Pr[Cn(x) accepts] ≥ 2/3 (x ∈ L), ≤ 1/3 (x /∈ L).

Definition 22.2 (EQP, BQP). *Exact* quantum poly-time (EQP) sets the error to
0. BQP is defined above with error < 1/2.

Remark 22.1 (Containments).

P ⊆ BPP ⊆ BQP ⊆ AWPP ⊆ PP ⊆ PSPACE.

The steps:
(a) BPP ⊆ BQP: simulate randomness.
(b) BQP ⊆ AWPP: using postselection and gap-amplifier polynomials (Fortnow–Rogers

1999).
(c) AWPP ⊆ PP ⊆ PSPACE are classical containments.
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22.3 Quantum certificates

Definition 22.3 (QMA & QCMA). A language L is in QMA (Quantum Mer-
lin–Arthur) if there exists a poly-time uniform verification circuit Vn such that for
some poly p(n):

x ∈ L =⇒ ∃ |ψ⟩ ∈ (C2)⊗p(n) : Pr[Vn(x, |ψ⟩) accepts] ≥ 2/3,

x /∈ L =⇒ ∀ |ψ⟩ : Pr[Vn(x, |ψ⟩) accepts] ≤ 1/3.

If the witness ψ is restricted to be classical (computational basis), the class is QCMA.

Theorem 22.1 (Local-Hamiltonian, Kitaev 2002). The k-Local Hamiltonian problem
is QMA-complete for k ≥ 2. Hence QMA is a quantum analogue of NP.

Hierarchy.
NP ⊆ MA ⊆ QCMA ⊆ QMA ⊆ PP.

QCMA ⊆ QMA is trivial; QMA ⊆ PP follows from the Feynman–Kitayev history
construction summed by a PP machine.

22.4 Interactive proofs

Definition 22.4 (QIP). QIP is the set of languages having a polynomial-round quan-
tum interactive proof with completeness c and soundness s, c− s ≥ 1/poly.

Theorem 22.2 (Jain–Ji–Upadhyay–Watrous 2010). QIP = PSPACE.

Remark 22.2. Constant-round subclasses satisfy QIP(3) = QIP (Kitaev–Watrous);
QIP(2) = QAM ⊆ PP.

Multiple provers. MIP∗ = RE (2020) shows entangled provers are *more* pow-
erful; nevertheless single-prover equality with PSPACE persists.

22.5 Zero-knowledge, refereed games, and beyond

Class Quantum analogue of Status
QSZK SZK QSZK ⊆ QIP(2)
QAM AM QAM ⊆ PP
QRG RG QRG = EXP
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22.6 Oracle and relativised separations

• BQP vs NP. Bernstein–Vazirani (1997) built an oracle A with BQPA ̸⊆ NPA.
Later, there are oracles with the reverse separation.

• QCMA vs QMA. Aaronson–Kuperberg (2007) give an oracle where QCMAA ̸=
QMAA.

• BQP vs PH. Relative to a random oracle, BQP is likely not in the polynomial
hierarchy.

22.7 Summary table

Class Definition type Complete problem Best upper bound
EQP exact quantum P-time parity of a permutation BQP

BQP bounded-error quantum P-time order-finding PP

QCMA quantum verify / classical proof group non-membership QMA

QMA quantum proof k-Local Hamiltonian PP

QIP poly-round QIP quantum circuit distinguish. PSPACE

QSZK zero-knowledge quantum state distinguish. QIP(2)

QRG quantum refereed games non-empty gap games EXP
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